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Abstract

This paper studies offline policy learning in contextual bandits, aiming to learn an optimal policy
from a fixed dataset collected under a known behavior policy [12]. Existing pessimistic policy learning
(PPL) methods have shown great promise in handling data with poor overlap—a common failure case for
standard estimators—but their theoretical and algorithmic tools are restricted to discrete action spaces.
This paper provides the first rigorous extension of PPL to continuous action spaces. This extension
introduces three fundamental challenges: (1) the statistical complexity of an infinite policy class can no
longer be measured by finite combinatorial metrics like the Natarajan dimension; (2) the variance of
the Importance Sampling (IS) estimator becomes unbounded as the behavior policy density u(alz) can
approach zero; and (3) the discrete tree-search optimization algorithm is no longer applicable.

We address these challenges by introducing a new set of theoretical and algorithmic tools. First, we
develop a novel continuous-action IS estimator Vn(ﬂ') and its corresponding self-normalized pessimistic
regularizer V, (), which generalizes the empirical Bernstein variance term. Second, using tools from em-
pirical process theory—specifically Dudley’s integral inequality and Massart’s concentration inequality—
we derive a new uniform concentration bound that holds for the resulting unbounded empirical process.
We establish the O(n~'/2) convergence rate of our estimator under a continuous overlap assumption
and provide a matching minimax lower bound. Finally, we demonstrate that naive policy gradient
optimization fails numerically and derive a computationally tractable Pessimism Policy Learning
with Majorization-Minimization (PPL-MM) algorithm. This algorithm provably optimizes our
non-convex and non-smooth pessimistic objective by converting it into a sequence of stable, re-weighted
policy gradient steps. Through a rigorous paired statistical evaluation (N = 180 independent exper-
iments), we demonstrate that PPL-MM achieves statistically significant improvements (FDR < 0.05)
over standard baselines, with massive effect sizes (Cohen’s d > 3.0) in the most challenging high-variance
scenarios.
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1 Introduction

Policy learning, which aims to find an optimal individualized decision rule from data, is a cornerstone of
modern data-driven decision-making [3, 28, 4]. Its applications are broad, ranging from personalized medicine
[29] and advertising [1] to recommendation systems [30]. A central challenge in this field is learning from
offline data, where a decision-maker must learn the best policy using only a fixed dataset collected a priori,
often by a suboptimal behavior policy [20, 8].

Learning from offline data requires counterfactual evaluation, which is notoriously difficult. Standard
methods, such as those based on Inverse Propensity Weighting (IPW), construct an estimate of a policy’s
value (or "welfare") and select the policy that maximizes this estimate [26, 9]. These "greedy" approaches are
highly sensitive to the quality of the offline data, particularly to the overlap assumption—the requirement
that the behavior policy assigns a non-trivial probability to all actions a target policy might take. In many
real-world scenarios, this assumption is violated [13, 19, 12]. When overlap is poor for a suboptimal policy,
its value estimate can have extremely high variance, potentially appearing much larger than its true value.
A greedy algorithm may then mistakenly select this highly suboptimal policy, leading to catastrophic failure.
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To address this fundamental flaw, recent work has introduced the principle of Pessimistic Policy
Learning (PPL) [13, 19, 12]. Instead of greedily maximizing the point estimate V (), PPL maximizes a
Lower Confidence Bound (LCB) of the value: V(r) — R(w), where R(r) is a policy-dependent regularizer
that quantifies the estimation uncertainty. The central benefit of this approach is that the algorithm’s final
performance guarantee depends only on the estimation error of the optimal policy, R(7*), rather than the
worst-case error over all policies. This allows PPL to learn effectively even when only the optimal actions
are well-covered in the data, while suboptimal actions may have arbitrarily poor overlap [12].

However, the existing theory and algorithms for PPL are fundamentally restricted to discrete action
spaces [12]. This limitation is severe, as many real-world problems, from robotic control and dynamic pricing
to medical dosing [14, 17], involve continuous actions. Extending PPL to the continuous-action setting is
not a trivial step; it breaks all three pillars of the original framework in [13, 12]. First, the statistical
complexity of the (finite) policy class in the original work is measured using combinatorial tools like the
Natarajan dimension [11]. For an infinite, continuous policy class (e.g., a class of functions 7w (a|z)), these
tools are no longer applicable. Second, the Importance Sampling (IS) estimator Vn(w) relies on the weight
w(z,a) = w(alx)/p(alz). In the continuous setting, the behavior policy u(alx) is a probability density
function, which can be arbitrarily close to zero. This makes the variance of Vn(ﬂ) unbounded and the
estimation problem even more severe than in the discrete case, invalidating prior variance bounds. Third,
the optimization of the pessimistic objective in the discrete setting is solved via a policy tree search, a method
that is computationally intractable in a continuous action space.

This paper provides the first rigorous, end-to-end extension of Pessimistic Policy Learning to continuous
action spaces. Our contributions are threefold:

1. Theoretical Framework for Unbounded Weights. We derive a novel self-normalized pessimistic
regularizer, V, (), specifically designed to control the unbounded variance characteristic of continuous IS esti-
mators. By replacing combinatorial complexity measures with modern empirical process theory—leveraging
Dudley’s entropy integral and Massart’s finite-class concentration inequalities—we prove a new uniform
concentration bound (Theorem 3.3) over infinite, parameterized policy classes. We further establish an
O(n~1/2) convergence rate under a continuous overlap condition (Corollary 3.5) and prove its minimax
optimality (Theorem 3.6).

2. Stable Optimization via Majorization-Minimization. Recognizing the numerical instability
of direct policy gradient optimization for our non-convex pessimistic objective, we develop the PPL-MM
algorithm (Algorithm 1). This method iteratively linearizes the regularizer, transforming the intractable
original problem into a sequence of stable, re-weighted surrogate problems that can be reliably solved with
standard tools.

3. Rigorous Statistical Validation. We design a new benchmark suite targeting distinct mechanisms
of overlap failure. Through a rigorous paired statistical evaluation (N = 180 independent experiments),
we demonstrate that PPL-MM achieves statistically significant improvements (FDR < 0.05) over standard
baselines, with massive effect sizes (Cohen’s d > 3.0) in the most challenging high-variance scenarios.

The remainder of this paper is organized as follows. Section 2 defines the problem setting. Section 3
presents our main theoretical results on uniform concentration and minimax optimality. Section 4 derives
the practical PPL-MM algorithm. Section 5 details our experimental benchmarks and statistical findings.
Section 6 concludes with a discussion of limitations and future directions. All detailed proofs are deferred
to the Appendix.

2 Preliminaries and Problem Setup

We consider the problem of offline policy learning in a continuous-action contextual bandit setting. Our
setup is based on a fixed, known behavior policy, which corresponds to the "batched data" setting described
by [12].

2.1 Notation and Definitions

Let (X, Y x) be the context space, and (A, ¥ 4) be the action space, where A is a compact subset of R? and
Y 4 is its Borel o-algebra. Let A4 denote the Lebesgue measure on A. The reward R is a random variable
supported on a bounded interval, which we normalize to R = [0, 1] without loss of generality.

The data is generated as follows:

1. A context X is drawn from a marginal distribution Py on X.



2. An action A is drawn from the behavior policy u(-|X), which is a Markov kernel from X to A. We
assume p(alx) is a probability density function (p.d.f.) with respect to A4 for all z € X, and that this
density function is known to the learner.

3. A reward R is drawn from a conditional distribution Pg(:|X, A).

We denote the true (unknown) mean reward function as Q(x,a) = E[R|X = z, A = a]. The joint distribution
over Z =X x Ax R is P. We are given an offline dataset D,, = {Z,;}_; = {(X;, Ai, R;)}-, of n iid.
samples drawn from P.

2.2 Policy Learning and Counterfactual Estimation

A policy 7 is a Markov kernel from X to A, which we also assume admits a p.d.f. 7 (a|z) with respect to
Aa. We consider a (potentially infinite) target policy class II. For the purposes of optimization (Section 4),
we will assume II is parameterized by 6 € © C RP, i.e., Il = {mg(alz) | 6 € O}.

The true value of a policy 7 € II is its expected reward over the data-generating process:

V) =Exery | [ #(a0)QUX.a)ia(@)

Our goal is to find the optimal policy 7* = argmax, c;V (7) using only the offline dataset D,,.

Since Q(x,a) is unknown, we cannot compute V(7) directly. We rely on counterfactual estimation via
Importance Sampling (IS). By the law of iterated expectations, V() can be re-written as an expectation
over the known data-generating distribution P:

V(m) = E(x,a,rR)~P [W(A|X)R}

1(AlX)

This motivates the standard IS estimator for the policy value:
Uulm) = LS w(mRs, where wi(n)
n\mT) = — w; (T iy where w;(m) =
[t
We refer to w;(m) as the IS weight for data point ¢ under policy .

2.3 The Pessimistic Objective

A standard "greedy" algorithm seeks to maximize the empirical value: 7greedy = argmaxﬂenffn(w). This
approach is notoriously unstable. In the continuous setting, the behavior density p(A4;|X;) can be arbitrarily
close to zero, causing the IS weights w; () to "explode". This leads to an estimator V,,(7) with catastrophic
variance, which may grossly overestimate the value of a suboptimal policy.

We adopt the Pessimistic Policy Learning (PPL) framework, which optimizes a Lower Confidence Bound
(LCB) of the value. The goal is to solve:

Tppl, = argmax, {Vn(ﬁ) — StdErr,, (7‘(‘)}

Here, StdErr, () is a policy-dependent regularizer that serves as a high-probability upper bound on the
estimation error, |V, (7) — V(n)|. The core of this paper is to derive a form of StdErr, (7) that is (1)
theoretically valid in the continuous-action, unbounded-weight setting, and (2) leads to a computationally
tractable optimization algorithm.

3 Theory of Continuous PPL

Our theoretical argument proceeds in three main parts. First, we restate the core algebraic principle of
pessimism, which is agnostic to the action space. Then, we establish the explicit form of the self-normalized
pessimism regularizer. Finally, we develop the primary contribution of this work: a new set of concentration
inequalities that allow this principle to be applied to the continuous-action, unbounded-weight setting.



3.1 The Principle of Pessimism

The core idea of PPL is to modify the greedy learning objective max, V,,(7) to explicitly account for esti-
mation uncertainty. This is achieved by optimizing a Lower Confidence Bound (LCB) on the policy value.
We define our pessimistic objective as:

pPL, = Argmax, oy {Vn(w) — StdErr, (w)}

where StdErr, (7) is a policy-dependent regularizer that we will construct to be a high-probability upper
bound on the estimation error, |V,, (1) — V()|

The fundamental merit of this pessimistic objective is captured in the following proposition, which is a
direct extension of the logic from [13, 12]. It demonstrates that the suboptimality of the learned policy 7ppr,
depends only on the estimation uncertainty of the optimal policy 7*, rather than the worst-case uncertainty
over all m € I

Proposition 3.1 (The Pessimism Principle). Let # = argmaz, y{Vy (1) — StdErr, (7)} be the policy learned
by PPL, and let 7" = argmaz, V() be the optimal policy in II. Let the suboptimality gap be L(7t) =
V(r*) = V(7).

Define the uniform concentration event £ as:

e~

Then, on the event &, the suboptimality of T is bounded by:

V() = V(x)| < StdBErr, (7)), Vre H}

L(7t) <2 StdErry,(7)

Proof. The proof is algebraic and holds for any choice of estimator V,, and regularizer StdErr,,, provided the
event & holds [12].
By the definition of 7 as the maximizer of the pessimistic objective, we have:

Vi (#) — StdErr,, (7t) > V,,(x*) — StdErr, (1) (1)

On the event £, we have two bounds by definition:

V(%) > V(%) — StdErr,, (7) (2)
Vo(7*) > V(7*) — StdErr,, (7*) (3)
We chain these inequalities together:
V(%) > V(%) — StdErr, (7) (by (2)) (4)
> V(%) — StdErr, (1%) by (1)) (5)
> (V(x*) = StdErr, (7*)) — StdErr, (7*) (by (3)) (6)
=V(r*) — 2 StdErr,(7*) (7)

Rearranging the resulting inequality, V(7) > V(7*) —2-StdErr,, (7*), gives the suboptimality bound V (7*)—
V(7) <2-StdErr, (7). O

Proposition 3.1 illustrates the power of the pessimistic framework. It shifts the analytic burden entirely
to constructing a regularizer StdErr, (7) that is both (1) a valid high-probability upper bound for the error
(i.e., satisfying event &) and (2) computationally tractable. The remainder of this section is dedicated to
the first challenge.

3.2 The Self-Normalized Regularizer

The challenge set by Proposition 3.1 is to construct a regularizer StdErr, (7) that (1) serves as a valid
high-probability upper bound on the estimation error |V, () — V()| and (2) is small for policies with good
overlap.

In the continuous setting, the IS estimator Vj,(r) is a sum of i.i.d. random variables Y;(7) = w;(m)R;.
These variables are unbounded, as the IS weight w;(7) can be arbitrarily large. Standard concentration
inequalities like Hoeffding’s, which require bounded support, are inapplicable.



We must therefore use a self-normalized approach, where the deviation of the estimator is controlled
by its own (empirical) variance, an idea central to the empirical Bernstein’s inequality. The total estimation
error |V, () — V(x| is driven by the variance of Y;().

We follow the logic of [12, Sec 3.3] to construct a regularizer that serves as an upper bound on the
standard deviation of V,, (7). The (conditional) variance of a single term Y;(r) is:

Var(Y;(n) | X;, A;) = Var(w;(m)R; | X;, 4;) = wi(ﬂ')2 -Var(R; | X;, A;)

Crucially, since we assume the rewards are normalized R; € [0,1], the variance of the reward is bounded:
Var(R; | X;, A;) < E[R?] <12 = 1. This implies that the conditional variance of our (unbounded) weighted
reward is upper-bounded by the (unbounded) squared weight itself:

Var(Yi(m) | Xi, A;) < wi(m)?

This is a critical finding. It justifies constructing the regularizer V,, (7m)—our proxy for the standard deviation—
based on the moments of the IS weights w;(7) alone, not the full weighted rewards Y; ().

This directly motivates our definitions for the regularizer components, which are the continuous-space
parallel to [12, Eq. (7)]:

1. Sample Deviation (V;,): The empirical Ly norm of the weights, normalized. This is our primary
computable proxy for the standard deviation bound.

) " . o\ 1/2
) AR m(Ail Xi)
! (Zm ) ) = (Z (Gt )

2. Population Deviation (V, ,): The population-level (conditional on X;) Ly norm of the weights.

n 1/2
y (ZE[WW |Xz-1>

where E[w;()? | X; = 2] = [, p(alz) (W Z}g) dia(a) = [, ZZ'Z)) d4(a).

3. Higher-Order Deviation (V},,): The population-level Ly norm of the weights, required in the
self-normalization proofs (see Appendix A.2).

1/4
th = <ZEU}1 4|X]>

The terms V,,, and V},, are theoretical constructs that are intractable to compute. However, V; , is
fully empirical and computable. As our theory will show, we need to control the error from all sources. This
includes the (bounded) drift of the conditional expectations (Term (ii) in our proof sketch), which requires
a minimal O(n~1/2) term.

This leads to our formal definition of the theoretical regularizer:

Definition 3.2 (Self-Normalized Regularizer). The theoretical self-normalized reqularizer V,, : 11 — R is
defined as:

Vp(m) := max {Vs,n(w), Vo (), Vi n (1), n_l/Q}

The full pessimistic reqularizer StdErr,(m) is the product of this term and a complexity measure 3(D,,) > 0,
which we derive in the following section:

StdErr,(r) = B(Dy,) - Vi ()
This regularizer is a "design-based" [12] upper bound on the standard deviation of V,(7), based only on

the known behavior policy u, the target policy m, and the assumption that Ry,.x = 1. This construction is
the key to our subsequent concentration bounds.



3.3 Main Theoretical Results

With the pessimistic principle established in Proposition 3.1 and our self-normalized, weight-based regularizer
defined in Definition 3.2, our primary task is to prove that the uniform concentration event £ holds with
high probability. That is, we must show that our regularizer StdErr, (7) uniformly controls the estimation
error |V, (r) — V(r)| for all 7 € II, even when the IS weights w;(7) are unbounded.

Our main theorem achieves this by leveraging the full power of our auxiliary lemmas (Appendix A.1). We
define the complexity penalty 3(D,,) as the sum of two distinct components, 5 and S, which correspond
to the two parts of our error decomposition.

Theorem 3.3 (Uniform Concentration and Suboptimality Bound). Let II be a policy class and D,, =
{(X;, A;, R;)}1_, be the observed dataset. Let D), = {(X;, A}, R,)}_, denote a ghost dataset where (AL, R})
are drawn conditionally independent of (A;, R;) given X;.

We explicitly define the following functional classes and measures:

1. Let P, := %Z?zl Ox, be the empirical measure over the contexts.

2. Let Fy:={gr: X = [0,1] | g=(2) = E(4,R)~r(-|2)[R | X = 2], 7 € II} be the class of conditional value
functions.

3. Let Fp, p; C R"™ be the class of self-normalized discrepancy vectors, where each fr € Fp, p: is a
vector with entries:

wr (X, ARy — we (X5, A}) R,

fﬂ',i = ;
VT (0n (X5, A)) w0 (X, A7)

1=1,...,n

Based on these, we define the worst-case and empirical complexity measures via Dudley’s entropy integral:

2
Ly(MLm) = sup [ fog N(e, Fo, oy ) de
D,,D;, Jo

To(F,) == /01 Vog N(e, . Ly(P,)) de

Fiz § € (0,1). Let C1,Co < oo be universal constants. Define the total complexity penalty f(D,,) :=
861 + B2(Dy), composed of:

B1 1= C1 (Taup(Tm) + V10g(49) ), Ba(Dn) 1= Ca (Tu(Fy) + v/10g(8/9))
Let StdErr,(m) == B(Dy) - Va(r) be the pessimistic regularizer (with V() from Definition 3.2), and let
ppr = argmax, c{ Vo (m) — StdErr, ()}

Assuming Lgyp(II,n) and E[Z,,(F,)] are finite, with probability at least 1 — §:

(a) Uniform Concentration:

V() — V(w)‘ < StdBrra(n), VeIl
(b) Suboptimality Bound: V(r*) — V(&ppr) < min{2 - StdErr,(7*),1}.

Proof Sketch. The full, rigorous proof is provided in Appendix A.6. The core of the proof is to establish part
(a).

1. Error Decomposition: We decompose the total error using the conditional expectation V() =
E[Va(m) | X1,..., Xn):

[Va(m) = V(m)] < V() = Va ()| + [Valr) = V()|
—_—— —_———

Term (i): Unbounded Fluctuation  Term (ii): Bounded Drift

2. Self-Normalization: We divide by our regularizer V, () and take the supremum over = € II:

V, — V|

|Term (i)] |Term (i)
sup v < sup Yy + sup v



3. Bounding Term (ii): This term is a standard empirical process for the bounded function class
Fy € [0,1]. By the definition of our regularizer, V,(m) > n~1/2. This allows us to bound the normalized
term:

|Term (ii)]
TS
We apply Lemma A.13, which uses McDiarmid’s, Symmetrization, and Empirical Dudley bounds, to show
that this term is bounded by 82(D,,) with high probability.

4. Bounding Term (i): This is the primary challenge, as it involves the unbounded Y;(w) terms. We

apply our (corrected) chain of symmetrization lemmas.

< sup |Term (ii)| - sup Vi < (sup |V (m) — V(7T)|) V/n

n

i. Lemma A.8 controls the necessary ghost sample weight statistics using conditional Chebyshev’s.

ii. Lemma A.10 uses this to show that P(sup ‘Tervini(l)l > 801) is bounded by the tail probability of a self-
normalized Rademacher process, S/, (F), where the denominator is the fo-norm of the weights, ||w+w’||.

iii. Lemma ?7? shows that this class F = {ﬁ} is, by construction, a subset of the ¢ unit ball B (1),
crucially using the fact that R; € [0, 1].

iv. This allows us to apply standard Dudley /Massart concentration (Lemma A.5) to this (now bounded)
process, proving it is controlled by (; with high probability.

We apply a union bound to the high-probability events for Term (i) and Term (ii). This shows that with

probability 1 — ¢, sup % < 861 + B2(Dy) = B(Dy), which proves part (a).
Part (b) follows immediately by applying Proposition 3.1 on the event £ established in part (a). O

Theorem 3.3 provides a fully data-dependent bound on the suboptimality, which holds under no overlap
assumptions. However, to understand the convergence rate of our algorithm, we must analyze this bound
under a condition analogous to the C,-overlap condition in the discrete case [12].

In our continuous, unbounded-weight setting, the natural analog is to assume that the IS weights corre-
sponding to the optimal policy 7* are uniformly bounded.

Assumption 3.4 (Uniform Overlap for 7*). There exists a finite constant C,, < oo such that the IS weights
for the optimal policy 7 are almost surely bounded:

" (a|z)

sup W= (:Ca a) = sup S Cw

TEX ,acA TEX,aEA p(alx)

This assumption implies that all moments of the IS weights w;(7*) are uniformly bounded (e.g., w;(7*)? <
C2, wi(7m*)* < C*). This allows us to move from self-normalized bounds to standard concentration inequal-
ities, yielding a concrete data-independent rate.

Corollary 3.5 (Convergence Rate under Overlap). Suppose the conditions of Theorem 3.3 hold. Further-
more, assume that Assumption 3.4 holds for the optimal policy 7*, i.e., its importance weights are uniformly
bounded by C,, < co. We define a data-independent complexity term Be(I1,n,d) that absorbs the expected
empirical complexity and tail terms:

fe(lln,8) =C (Isupm,n) +E[Z,(F,)] + 0 ( 1g<1/5>>>

n

for a sufficiently large universal constant C' < oo. Then, there exists a constant Cy (C,,) < 0o such that with
probability at least 1 — 9

< OV : /BC(HJ n, 5)

- vn

Proof Sketch. The detailed proof is deferred to Appendix A.7. The argument relies on a union bound over
three high-probability events:

L(7)

1. Suboptimality Bound: By Theorem 3.3, L(#) < 28(D,,)V,(7*) holds with probability 1 — §/3.

2. Regularizer Concentration: Under Assumption 3.4, the weights w;(7*) are bounded. Applying
Bernstein’s inequality shows that the empirical variance terms in V,,(7*) concentrate rapidly, yielding
Vo (7*) = O, (n~1/2). This holds with probability 1 — /3.



3. Complexity Concentration: The data-dependent complexity S2(D,,) concentrates around its ex-
pectation due to the bounded differences property of the empirical Rademacher complexity. By Mec-
Diarmid’s inequality, 8(D,,) < B¢ (I1, n, §) with probability 1 — 6/3.

Combining these, we obtain £(#) < O(1) - B¢ - n~/? with high probability. O
The other side of the inequality, which is the minimax bound, can also be established accordingly:

Theorem 3.6 (Minimax Lower Bound). Let the x*-pseudo-metric be defined as d, (7, 7')? := Ex [fA Wda .
Let P(Cy,,0%) be the class of all problem instances P = (Q, 1) such that:

(i) The policy class 11 satisfies a x*-diameter bound: sup, . Ex [fA 7:}(‘2'?; da} < Cy.

(ii) Rewards are drawn from a Gaussian distribution R ~ N(Q(z,a),c%).

Let M (€) = Npqci(e,11,d,,) be the e-packing number of IT under d,,. Let the suboptimality risk for an estimator
7 on an instance P be Lp(7t) := Vp(wh) — Vp(&), where m} is the optimal policy for P.
If M(e) > 4, there exists a constant C3 > 0 (depending only on 0% ) such that the minimaz risk over this
class is bounded below by:
inf  sup  Ep[Lp(7)] > Cse®- log M(c)
T PEP(Cu,02) n-Cy

Proof Sketch. Appendix A.8 provides a rigorous proof using Fano-Le Cam arguments [12]. We identify
a subset IIy that e-packs II under d,, and construct M problem instances P; = (Q;, 1) with Q;(z,a) =
Amj(alz)/p(alx), plus a null instance Py. The KL divergence between P; and P, is shown to be small,
2{;}; ||ﬂj\|i,1 < %g"” for Gaussian rewards. These instances are well-separated by risk, with

suboptimality gaps £;(mi) + Ly (m;) = Ad,(mj, mx)% > A€?, implying a minimum risk of $Ae?. Using Fano’s

specifically n

Inequality, we balance KL divergence and risk by setting % = log M (€), which confirms the lower bound
R
matches the upper bound from Corollary 3.5, optimizing dependencies on n and overlap C,. O

4 Practical Algorithm

Our theoretical results in Section 3 establish that the pessimistic objective, J(7) = V() — StdErr,, (),
provides a statistically valid and efficient path to policy learning in continuous action spaces. However, these
theoretical guarantees are predicated on our ability to actually solve the optimization problem:

7 = argmax, cpJ ()

As we have parameterized our policy class IT = {my | § € ©}, this becomes an optimization problem over 6. In
this section, we first demonstrate that a standard application of the Policy Gradient theorem is numerically
unstable and fails to optimize this objective. We then derive the PPL-MM algorithm, a practical and robust
method that is consistent with our theory.

4.1 The Challenge: Failure of Naive Policy Gradient

A natural first approach to maximizing J(#) is to apply a gradient ascent method. Let us consider the
naive policy gradient (PG) of our objective, using the practical regularizer StdErr, (1) ~ gypractical(mz) —
B - max{V; ,(7),n"/2}. We choose so, because V;,(m)? is simply an unbiased, empirical Monte Carlo
estimator of ‘/},m(w)z, therefore they are very close for large n, and that the higher order V},,, is usually
ignorable [12, Section 6.1]. For simplicity, let us analyze the gradient in the region where the variance term
dominates, i.e., StdErr,, (7)) = BV (7).

The objective is J(8) ~ V,,(m9) — Vsn(mp). The gradient is:

Vo J(0) = VoVi(mg) — BVoVs.n(ms)

We analyze each term separately using the log-derivative trick, Vomy = myVylogmy, and the resulting
gradient of the IS weight, Vow;(6) = w;(0)Vglogmg(Ai| X;).



1. Gradient of the Value Term V(my): This is the standard REINFORCE gradient for the IS
estimator:

VoV (mg) = ( sz ) = > RiVpu(0) (8)

) ZRi’wi(e)VO log mg(A;|X;) = Ep, [Yi(me) - Vo log mg(A;]X;)] 9)

i=1

This gradient estimate is already known to suffer from high variance, as it depends directly on the (potentially
explosive) weighted reward Y;(mp) = w;(0)R;.
2. Gradient of the Regularizer Term V ,(mg): This term is the source of the critical instability.

" 1/2
Vsn(mg) = % <Z wi(0)2>

Applying the chain rule:

VoVon(m) = - Vel 0)?) (10)
2(2?:1%-(9)2) =i

= Z Qw, ng, ) (11)

nVsn o)) =
1
= m Zwi i(e)VG log 770(141'|Xi)) (12)
= sz Vo log mg(A;| X;) (13)
s n 7T9

The full (naive) gradient VyJ(6) is thus an empirical expectation of the form:

VoJ(6) ~ %Z (Riwi(e) ijS“:((WZQ Vo log 7 (A;]X;)

i=1

This gradient estimate is numerically catastrophic. Its magnitude is driven not just by the IS weights w;(6),
but by the square of the IS weights, w;(6). In the exact "poor overlap" scenarios that PPL is designed
to solve, w;(6) will be large. The variance of an estimator involving w;(#)? will be orders of magnitude larger
than the already-unstable variance of the standard IS gradient.

Any optimization algorithm (e.g., SGD, Adam) that relies on this gradient will be dominated by noise
from a few data points with extremely small p(A4;|X;), failing to make meaningful progress. This is precisely
what we observed in our initial experiments. This failure is not a flaw in the pessimistic objective J(8), but
a fundamental limitation of the naive policy gradient method for this class of non-smooth, high-variance
objectives. We must therefore develop an alternative optimization strategy.

4.2 The Continuous Concave-Convex Procedure (CCCP) Algorithm

Given the numerical instability of the naive policy gradient approach demonstrated in Section 4.1, we require
a more robust optimization strategy. The core of the issue is the non-convexity and high variance of the
regularizer. Our pessimistic objective is J(6) = V,,(mp) — StdErr,, ().

We use the practical, computable regularizer from Definition 3.2:

StdErr,, (mg) = 3 - VEractical () — 8. max {Vsm(ﬂ'@), n_l/Q}

Let w(0) = (w1(0),...,w,(0)) € R™ be the vector of IS weights. Our objective can be written as a Difference
of Convex (DC) objective:

where:



1. f(w)=213" w;R; is alinear (and thus concave) function of w.

2. g(w) =B max {L|wl2,n~/?} is a convex function of w, as established in Lemma 4.1.

We aim to solve maxg[f(w(6)) —g(w(#))]. This is a classic DC program. A standard and globally convergent
(to a stationary point) method for this problem is the Concave-Convex Procedure (CCCP) [23].

The CCCP algorithm iteratively maximizes a surrogate objective Ji(6). At each iteration k, the (sub-
tracted) convex part g(w) is replaced by its first-order Taylor approximation at the current iterate wy =
Lemma 4.1 (Convexity and the CCCP Surrogate). Let g : R® — R be the convexr regularizer g(w) =
B3 - max {%||W||2,n’1/2}. By the definition of convexity, for any iterate wy, g(w) is globally lower-bounded
by its linearization:

g(W) > g(wk) + v.g(wk)T(W - Wk) = glinear(w; Wk)
where Vg(wy) is any subgradient of g at wy.

Proof. The function hy(w) = %HW”Q is convex (as the Ly-norm is convex). The function ho(w) = Bn~1/? is
constant (and thus convex). g(w) = max{hy(w), ho(w)} is the pointwise maximum of two convex functions,
which is itself convex. The inequality is the definition of a convex function’s subgradient. O

The CCCP algorithm proceeds by replacing the difficult term —g(w) with its simpler upper bound,
—Qlinear (W). This creates a surrogate objective Ji(6) that we maximize at each step:

J(0) = f(w(0)) — g(w(0)) (14)
< f(w(0)) — Glinear(W(0); wy) := Ji(#) (This is a Majorizer) (15)

The next iterate 0y41 is found by maximizing this surrogate objective:

Ops1 = argmaxpe g Ji(0) = argmaxyee | £(W(0)) = Va(wi) w(0) — (9(wi) — Vg(wi) wy)

Constant w.r.t. 6

This algorithm, while technically "Majorization-Maximization" (maximizing an upper bound), is a valid
ascent algorithm (see [15] for convergence proofs).
Dropping the constant terms, the optimization for 65, simplifies to:

Opy1 = argmaxgcg {Tll Z w;(0)R; — Z [VQ(Wk)]i wz(‘g)}

i=1

= argmasyee § - wi0) (R — n[Vg(wi)]) (16)

Surrogate Reward ng)

This is a powerful simplification. The complex non-convex problem is reduced to a standard (greedy) IS
policy value maximization, but with the original rewards R; replaced by fixed, pre-computed surrogate

rewards ng) .

We now compute the subgradient Vg(wy,) to find the surrogate reward. Let Vs(ffl) = L{|wgllz.

1. Case 1: VS(,]Z) > n~1/2, The max is active on the first term.

9 <6||W|2)’ _ B wik)  Pwi(k) _ Swi(k)

dw; \n nolwills  n@v®) v

[Vg(wi)]; =

The surrogate reward is: ng) =R,—n (B;”V((lg> =R, — 57“;7(%)
n“Vsn NVsn

2. Case 2: Vg(fﬁb) < n~1/2, The max is active on the constant term n~1/2 (or at the kink). The subgradient
is 0.
[Vg(wyi)]; =0
The surrogate reward is: ng) = R;

This derivation provides the formal justification for the PPL-MM algorithm presented in Algorithm 1, which
is a correct and convergent implementation of the CCCP.
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4.3 The PPL-MM Algorithm

The derivation in Section 4.2 provides the theoretical foundation for our practical algorithm. It transforms
the intractable optimization problem max .J(#) into a sequence of tractable surrogate problems max Ji(0).
However, as we demonstrated in our initial experiments, any algorithm based on IS weights is numerically
fragile.

To create a robust and practical algorithm, we must incorporate two standard stabilization techniques

that directly address the numerical instabilities encountered in the code. These techniques are essential for
the algorithm to succeed in practice.

1. Denominator Clamping: The behavior policy density p; = pu(A;|X;) appears in the denominator of

all IS weights. To prevent division by zero or near-zero values, we clamp the denominator at a small
positive constant €, (e.g., 107%). The effective behavior policy density becomes:

PP = max(pi )

. IS Weight Clipping: While the MM procedure stabilizes the objective, the policy gradient step still
computes a gradient based on the current policy’s weights w;(6). To prevent a single data point with
a large weight from destabilizing the inner gradient ascent, we cap the weights used in the gradient
calculation at a large constant Cqip.

A X;
w;(#) = min <7r9 (d;l]pz) , Cclip>
N,

(3

For theoretical consistency with the MM derivation, the un-clipped weights w;(k) are used to compute

the statistics Vs(f;) and the surrogate reward ng). The clipping @;(#) is only applied inside the inner

PG loop for gradient stability.

These additions lead to our final, robust PPL-MM algorithm, presented in Algorithm 1.

Algorithm 1 Pessimistic Policy Learning via Majorization-Minimization (PPL-MM)

1: Input: Offline dataset D,, = {(X;, Ai, Ri, ;) };, initial policy g, , pessimistic hyperparameter 8 > 0.

N

11:
12:
13:

14:

15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:

Parameters: Outer loop steps K, inner loop PG steps Tpg, learning rate n, stability constants
(euvoclip)'

0 0()
chonst — n_1/2
for k=0to K —1do > OQuter MM loop

// — Step 1: Majorization (Compute Surrogate Rewards) —

S max(py, €,,) for i = 1.n

7o, (Ai| X; . . .
w; (k) % for i =1..n  (Compute weights at current iterate)

Vs(,lfl) — (O, wik)*+ 1078)1/2 (Compute empirical variance)

n
i ()
if Vs,n > chonst then
ng) — R; — B"‘;i(%) fori=1.n  (Pessimism-adjusted reward)
NVsn

else
ng) < R; fori=1..n  (Regularizer gradient is zero)
end if

// — Step 2: Minimization (Maximize Surrogate Objective) —

for t =1 to Tpg do > Inner PG loop
w; () + TG0
P
w;(0) < min(w;(6), Caip)  (Clip for gradient stability)

Ji(0) + 23" w;(0)R™  (Surrogate objective)

11



26: go < VoJi(0) (Compute policy gradient using log-derivative trick)

27: 6 + Adam(f,gp,n) (Update policy parameters)
28: end for

29: Or11 < 0

30: end for

31:

32: Output: Final policy 7 = mp,

5 Experiments

We conduct a rigorous statistical evaluation to validate the performance of our PPL-MM algorithm (Algo-
rithm 1) against the standard Naive Policy Gradient (PG) baseline. Our primary goal is to demonstrate
that the theoretically derived pessimistic regularizer, combined with the stable MM optimization framework,
provides a statistically significant improvement in policy learning, particularly in scenarios characterized by
severe overlap failure and high variance.

5.1 Benchmark Design

We utilize a suite of three synthetic environments designed to probe different facets of offline policy learn-
ing challenges in continuous action spaces. For all benchmarks, the context X is drawn uniformly from
U([-1,1]%), the action space is A = [—1,1], and the offline dataset D,, consists of n = 10,000 samples. Full
functional forms for rewards and behavior policies are detailed in Appendix B.1.

Benchmark 1: BiasedBehaviorSharpPeak (High-Variance Trap). Tests the ability to identify
a sharp, high-reward peak located in a region of low behavior density (u(a|z) = 0), triggering extreme IS
weights.

Benchmark 2: SafetyConstrainedReward (Complex Risk Profile). Introduces a non-convex
reward landscape with a steep "safety penalty," creating a high-risk optimization challenge where naive
estimators frequently diverge into penalized regions.

Benchmark 3: SparseRewardWithNoise (High Inherent Noise). Tests robustness in a regime
dominated by aleatoric noise (0,,0ise = 0.4) rather than epistemic uncertainty, checking if pessimism degrades
performance when not strictly necessary.

5.2 Algorithms and Baselines

We compare two primary algorithms to isolate the benefits of our proposed framework:
1. Naive PG (Baseline): Direct maximization of the IS estimator V,(my) via standard policy gradient.
2. PPL-MM (Ours): Our proposed Algorithm 1.

To ensure our results are robust to hyperparameter choices, we evaluate four variants of PPL-MM: Standard,
HighClip, LowClip, and HighClamp (exact parameter settings are provided in Appendix 1).

5.3 Statistical Evaluation Protocol

We employ a paired factorial design (Appendix B.2) to rigorously assess performance. For each (Task,
Variant) combination, we execute N = 15 independent runs with different random seeds. Crucially, both
algorithms are evaluated on the exact same 15 offline datasets {DSf )}gl to eliminate nuisance variance from
data sampling.

Performance is measured by the true expected reward of the final deterministic policy, V(fr(i)), estimated
via Monte Carlo. We report the paired difference A; = V(ﬁ'l()%L_MM) - V(frl(\;;ive pe)- Statistical significance
is determined using paired t-tests and Wilcoxon signed-rank tests [21], with Benjamini-Hochberg (FDR)
correction at o« = 0.05 to control for multiple comparisons (see Appendix B.5 for full derivations of these
metrics).

5.4 Results and Analysis

We synthesize results from N = 180 independent paired experiments. The quantitative summary in Table
2 reveals a stark contrast in performance: PPL-MM achieves statistically significant improvements (FDR
< 0.05) in every tested condition.
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5.4.1 Efficacy in High-Variance Regimes

Our primary theoretical assertion is that pessimistic regularization is essential when the behavior policy has
poor coverage of optimal regions. This is empirically confirmed by the results in the BiasedBehaviorSharp-
Peak and SafetyConstrainedReward benchmarks.

As illustrated in the Forest Plot (Figure 1), these two tasks exhibit massive effect sizes (Cohen’s d > 3.0).
The 95% confidence intervals for the mean paired difference A are far removed from zero, indicating a nearly
complete separation in performance distributions. The Paired Comparison plots (Figure 2) further decon-
struct this aggregate metric, revealing that PPL-MM outperforms Naive PG on every single random seed
in these tasks. In BiasedBehaviorSharpPeak, Naive PG frequently collapses to near-zero reward, confirming
that without pessimism, the optimizer is misled by high-variance gradients. PPL-MM consistently recovers
high-performing policies on these exact same datasets, validating that the self-normalized pessimistic term
Vn(m) correctly identifies and penalizes these variance traps.

Forest Plot: Effect Sizes with 95% Confidence Intervals

SafetyConstrain
LowClip —@—
SafetyConstrain
HighClamp .
SafetyConstrain
Standard -
SafetyConstrain ®
HighClip
SparseRewardWit ®
HighClamp
SparseRewardWit P
LowClip
SparseRewardWit
HighClip ®
SparseRewardWit
standard ®
BiasedBehaviorS
HighClip =
BiasedBehaviorS
HighClamp
BiasedBehaviorS
Standard
BiasedBehaviorS
LowClip =
mmm Significant (FDR-corrected)
POOLED = Not significant ‘
- Pooled effect

00 01 02 03 04
Mean Difference (PPL-MM - Naive PG)

Figure 1: Forest Plot of Paired Effect Sizes. Displays the mean paired difference A with 95% confidence
intervals for each condition (N = 15 pairs). The "Pooled" diamond represents the meta-analytic average
effect size across all 180 runs, confirming a statistically significant global improvement.

Paired Comparisons: PPL-MM vs Naive PG

BiasedBehaviorSharpPeak SafetyConstrainedReward p

¥ ¥ T T o+ + $ 4

Performance
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PPL-MM

S < N & S N N & N R S
& s & o 3 9 & 3 9 & 5
o 3 N s o S K s

< & R & & o

0,

Figure 2: Paired Comparison Plots. Each line connects the performance of Naive PG and PPL-MM on
the same random seed. The consistent upward slopes in challenging tasks (left, middle) demonstrate robust
seed-level superiority.

5.4.2 Optimization Stability and Robustness

The learning curves in Figure 3 demonstrate a fundamental difference in optimization stability. Naive PG
(red curves) exhibits extreme volatility and frequent late-stage performance collapse, a hallmark of variance-
driven failure. In contrast, PPL-MM (blue curves) shows stable, monotonic improvement with remarkably
narrow error bands. This confirms that replacing the raw IS objective with our MM-derived surrogate
effectively smooths the optimization landscape.
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Learning Curves: Mean + Std Dev
BiasedBehaviorSharpPeak BiasedBehaviorsharpPeak BiasedBenaviorSharpPeak BiasedBehaviorsharpPeak
Standard HonClip Lowcip WighClamp

wwers ] [ " 06 | — nave s o

e (True Reward)
\

pertorm

ce (Iue Reward)
ance (True Reward)

pertormant

perto

SparseRewardWithNoise
HighClamp.

Evaluaton poin (every 200 teps) Evaluation Point (every 200 steps) Evaluation Poin (every 200 steps) Evaiation Point (every 200 steps)

Figure 3: Learning Curves (Mean + Std Dev). Shaded regions indicate standard deviation across 15
seeds. PPL-MM (blue) demonstrates significantly higher stability and resistance to policy collapse compared
to Naive PG (red).

Furthermore, the heatmap in Figure 4 shows statistically significant improvements (indicated by blue
borders) across all tested hyperparameter variants (Standard, HighClip, LowClip, HighClamp). This indi-
cates that PPL-MM is a fundamentally robust algorithm that does not require delicate tuning to outperform
standard baselines.

after FDR cor

Performance Difference Heatmap (Blue border = si

0.017

HighClamp

0.047

HighClip

Variant

-0.035

LowClip
Mean Difference (PPL-MM - Naive PG)

0.017

Standard
L

BiasedBehaviorSharpPeak SafetyConstrainedReward SparseRewardWithNoise
Task

Figure 4: Performance Difference Heatmap. Colors indicate the magnitude of A. Blue borders denote
statistical significance (FDR < 0.05). The uniform significance across variants confirms algorithmic robust-
ness.

5.4.3 Safety in Low-Signal Regimes

Finally, the SparseReward WithNoise benchmark tests the algorithm in a regime dominated by aleatoric noise.
While massive gains are not theoretically expected here, PPL-MM still achieves a moderate, statistically
significant improvement (d ~ 0.7) and does not suffer from performance regression. This confirms that the
pessimistic regularizer safely vanishes when the primary challenge is inherent noise rather than coverage

gaps.

6 Conclusion

In this paper, we presented the first rigorous extension of Pessimistic Policy Learning (PPL) to the challenging
setting of continuous action spaces with a fixed, known behavior policy. This extension required overcoming

14



three fundamental obstacles present in the original discrete-action framework [12]: the infinite statistical
complexity of the policy class, the unbounded variance of the continuous Importance Sampling (IS) estimator,
and the intractability of the original tree-search optimization algorithm [12, Section 6.1].

We successfully addressed these challenges both theoretically and algorithmically. Theoretically, we
replaced the combinatorial complexity measures (Natarajan dimension) with tools from empirical process
theory, including Dudley’s integral inequality and Massart’s concentration bounds (Section 3, Appendix
A.1). We defined a new self-normalized regularizer, V,(r), designed to handle unbounded IS weights and
proved a novel uniform concentration bound (Theorem 3.3) justifying the pessimistic objective in this setting.
We further established the O(n~'/2) convergence rate of our estimator under a continuous-action overlap
assumption (Corollary 3.5) and provided a matching minimax lower bound (Theorem 3.6).

Algorithmically, we established that naive policy gradient optimization of the pessimistic objective is
numerically unstable due to the extreme variance of IS gradients (Section 4.1). To resolve this, we derived
the PPL-MM algorithm (Algorithm 1), a robust optimization framework grounded in the Majorization-
Minimization principle that transforms the non-convex, high-variance objective into a sequence of stable
surrogate problems. Our rigorous statistical evaluation, comprising N = 180 paired experiments, empirically
validated this approach. PPL-MM demonstrated statistically significant superiority (FDR < 0.05) over
standard baselines across all tested conditions, achieving massive effect sizes (Cohen’s d > 3.0) specifically
in scenarios designed to trigger severe overlap failure.

Limitations. Our work has several limitations that open avenues for future research. First, our theoretical
framework and algorithm rely on precise knowledge of the behavior policy density p(a|z), which may not
be available in many real-world observational settings. FExtending our self-normalized bounds to handle
an estimated fi(a|x) is a highly non-trivial task. Second, our practical PPL-MM algorithm (Algorithm 1)
optimizes a computable version of the regularizer, VPractical = max{V, .., n—1/ 2}, which does not include the
theoretically-defined (but intractable) V,,,, and V}, ,, terms. While V ,, is the unbiased empirical counterpart,
a deeper analysis of this discrepancy is warranted. Finally, the MM algorithm is only guaranteed to converge
to a stationary point of the non-convex objective, not the global optimum.

Future Outlook. This work suggests several promising directions. The most important next step is to
develop a continuous-action version of the Augmented IS-weighting (AIPW) estimator. An AIPW-based
PPL would leverage a learned reward model QA(QE7 a) to dramatically reduce the variance of both the value
estimate Vn(w) and the regularizer V ,, (), likely leading to much more stable and sample-efficient algorithms.
Furthermore, extending this "design-based" pessimistic framework from the single-step contextual bandit
setting to sequential decision-making in offline Reinforcement Learning (RL) with continuous action spaces
remains a significant and open challenge.
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A Theoretical Proofs

This appendix provides the complete, rigorous proofs for the theoretical results presented in Section 3. The
proofs are presented in a sequential, self-contained manner, where all auxiliary lemmas are established before
they are used in the proofs of the main theorems.

A.1 Auxiliary Lemmas

We begin by stating several foundational results from probability and empirical process theory that are used
throughout our analysis.

Lemma A.1 (Bernstein’s Inequality). Let X, ..., X, be independent real-valued random variables. Assume
there exists a constant Rpern, < 00 such that E[X;] = 0 and |X;| < Rpern almost surely for all i. Let
V=Y E[X?] be the sum of variances. Then for any t > 0:

< t2/2
P X;>t] <exp (—)
i:zl ! Vn + ]%bernt/3
This result is a special case of Freedman’s inequality for martingales, applied to the i.i.d. mean-zero case.

Proof. See [7]. O

Lemma A.2 (Bounded Differences Inequality). Let Xi,...,X,, be independent random variables, with X;
taking values in a set X;. Let g : [[i_; Xi — R be a function of these variables. Suppose that g satisfies the

bounded differences property: for everyi € {1,...,n} and any x1,..., T, and =, € X;:
sup |g($17...,$i,...,$n) _g($17~-~>$27~--,$n)| Sci
T1,..., Ty, T

Let Z = g(X4,...,X,). Then for any t > 0:

2
P(|Z - E[Z]| 2 t) < 2exp <—chg>
=16

Proof. The proof is a standard results from [18]. O

Lemma A.3 (Symmetrization for Empirical Processes). Let F be a class of real-valued functions f : Z — R.
Let Zy,...,Z, be ii.d. samples from a distribution P. Let P, = n= 'Y " 0z, be the empirical measure
and Pf = E[f(Z)]. Let Rn(F) = EcsuperIn™' Y0 &f(Zi)| | Z1,..., Zy] be the empirical Rademacher
complexity, where {€;}_, are i.i.d. Rademacher variables. Then:

E |sup [(P, — P)f|| < 2E[R,(F)]
feF

Proof. This is a classic symmetrization argument as illustrated in [16]. O

Lemma A.4 (Dudley’s Integral Inequality). Let F be a class of functions such that f(z) € [0,1] for all
fe€F and z € Z. Let d = Lo(P) be the Ly pseudo-metric induced by P. Let N(e, F,d) be the e-covering
number of F with respect to d. There exists a universal constant Cp < oo such that the expected Rademacher

complexity is bounded by: .
C diam(F)

E[R,(F)] < TD Viog N(e, F, d)de
nJo

where diam(F) < 1 is the diameter of F under d.

Proof. A full and rigorous proof of Dudley’s Integral Inequality is a deep and technical result in empirical
process theory, typically established via generic chaining arguments [2, Chapter 13]. O
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Lemma A.5 (Massart’s Concentration). Let F C R™ be a class of vectors. Let S}, (F) =sup;cz|> i, € fil
be the unnormalized Rademacher process, where {€;}_; are i.i.d. Rademacher variables. Let R* = SUpfc If1% =
SUp e F St f? be the squared lo-radius of the class. Then for any t > 0:

2
P, (S,(F) > E[S,(F)] + 1) < exp (;}32)

Furthermore, the expectation E.[S],(F)] can be bounded by the generic chaining (Dudley) integral with respect
to the £3(R™) metric dy,:

diam(F)
E.[S! (F)] < Cr / /108 N{e, 7, dy,)de
0

where Ct < 00 18 a universal constant.

Proof. Define the Rademacher supremum:

g(e) :== S,,(F) = sup Z&'fi, e=(e1,...,6n) € {£1}". (17)
feria

For any €,&’ € {£1}", we have:

lg(e) — g(") = SI}p<€,f> —Sl}p<€’,f> §s1}p|<€—€’,f>| < ||6-€’stt}p||f||2~ (18)

So ¢ is R-Lipschitz w.r.t. the Euclidean metric on the hypercube. Then, the concentration theorem for
Lipschitz functions on product measures [2, Theorem 5.6] yields that for all ¢ > 0, we have:

2
P.(g(e) > Eulg(e)] + ) < exp (;;) (19)

This is exactly the displayed tail bound.
Now we consider the expectation bound. Consider the stoachastic process indexed by F:

X; = Zeifi. (20)
i=1
For any f,g € F, we know:
Xp— Xy =Y cilfi— i) (21)
i=1
By Hoeflding, we have:
t2
P Xy — Xgl = t) < 2exp (_2||f—g||2>’ (22)
2
with metric:
a(f,g) = Ilf — gll2, (23)

i.e. the usual increment condition of sub-Gaussian variables Pr(| Xy — X | > t) < 2exp(—t2/(2d(f,9)?))
holds.

For processes with sub-Gaussian increments (metric d), Dudley’s entropy-integral bound [6] gives:

diam(F

)
<C \/1og N (e, F,d)de, (24)
0

E|sup Xy
feF

where N (e, F,d) is the covering number under d = dy,, and the exsistence of sharp universal constant is
ensured by [25], yielding C = Cr.
O
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Lemma A.6 (Fano’s Inequality for Minimax Risk). Let P = {Py, P1,..., Py} be a set of M +1 > 2
probability measures. Let 0 : P — © be a parameter of interest, and d : © x © — R a pseudo-metric. Let 6
be any estimator of 6(P) based on n samples from P. If there exists € > 0 such that d(8;,0r) > 2€' for all
J#k (j,ke{0,...,M}), then:

inf sup Ep[d(6,0(P))] > €

6 Pep

1 max;>q DKL(P](&"HP(J@”) +10g2
log M

Proof. This lemma provides a lower bound for the minimax risk over a set of parameters © = {6y, ...,0,},
based on the parameters’ separation in the risk metric d and their indistinguishability in the Kullback-Leibler
(KL) divergence, adapted from [27, Theorem 2.4].

The proof proceeds by first relating the minimax risk (an expectation) to the maximum probability of
estimation error. This error probability is then related to the error probability of a multi-hypothesis test,
which is in turn bounded by the standard Fano’s inequality.

Let 6 be any estimator of 6(P). The minimax risk is inf;suppep Ep [d(6,0(P))]. By Markov’s inequality,
for any € > 0 and any j € {0,..., M}:

E;[d(6,6;)] > ¢ -P;(d(6,0;) > €')

Taking the supremum over j on both sides:

sup  E;[d(9,6,)] > ¢ - ( sup  P;(d(6,6;) > e'))
j€{0,...,M} j€{0,...,M}

This inequality holds for any estimator 0. Therefore, it also holds for the infimum over all estimators:

inf sup E;[d(6,0,)] > ¢ - inf supP;(d(6,6;) > €) (25)
0 j 0 J

We now relate the estimator’s error probability to the error probability of an associated hypothesis test
¥. Given any estimator 0, we define a test ¢ : D,, — {0,..., M} as:

W(Dy) = argmin d(6(D,), )
ke{0,...,M}

(with ties broken arbitrarily). We analyze the implication of the event {d(6,60;) < ¢'}. If this event occurs,
then for any k # j, the triangle inequality gives:

d(6,0y) > d(6;,6) — d(8,6;)
By the lemma’s assumption, d(6;,0x) > 2€.

d9,0y) > 2 —¢ =¢

Thus, if d(6,6;) < ¢, it must be that d(6,6;) < ¢ < d(f,6;) for all k # j. This implies that the argmin
must be j. In other words, the event {d(6,6;) < €} is a subset of the event {¢(D,) = j}.
The complementary events are therefore related as:

{0(Dn) # 7} € {d(6,0)) > ¢}
This implies P; (1) # j) < P;(d(0,0;) > €). This holds for all j € {0,..., M}. Taking the supremum over j:

sup P #j)<  sup Pj(d(é,ﬂj) > €)
jefo,.., M} jefo,.., M}

Since the test ¢ was constructed from 6, the infimum over all estimators 6 must be at least as large as the
infimum over all possible tests ):

infsup P;(d(6,0;) > €) > infsupP; (v # ) (26)
0 J J
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We now bound the maximum probability of error for the hypothesis test. The maximum error is always
greater than or equal to the average error over any subset of hypotheses. We choose the subset Oy =
{1,..., M}, which has cardinality M:

M
inf s
wje{bol,l.? Pl #£3)2 Z:: iW#39)

Let 6 be a random variable drawn uniformly from @y = {1,...,M}. The average error p. = infy P(¢ #
0) = infy 47 Z;‘il P, (1 # j). The standard Fano’s inequality states:

51— 1(0; D,,) + log 2
log M

where I(0; D,,) is the mutual information between the parameter 6 and the data D,,.
We bound the mutual information using Py as a reference measure.

1(6; D,,) = Dk (P9 p.||Ps x Pp,) o
M o
= M ZDKL PEM|PRL)  (where Py = i ZPE)n) (28)
! k=1
. PE" ®n
= % ;Ej log dPi)®" — log jp;g:; (29)
| M
= > Dicn(PPIPE™) — Dice (P PE™) (30)

<
Il
—

Since the Kullback-Leibler divergence is non-negative, Dy, (PS||PP™) > 0. We can thus upper-bound the
mutual information:

1(6; D,) ZDKL (PEM|P™) < max  Dyp(PP™|PS™)

ic{1,..,.M
J 1 Jjef{1,....M}

Substituting this bound into the Fano’s inequality for average error:

max;>1 D (P[] P7") + log 2

mf—ZP (p#£37)>1-— o 11 (31)

We chain the inequalities from previous steps:
inf sup Ep[d(6,0(P))] > 1nfsupIP’ (d (é,ﬂj) > ¢) (from (25))  (32)

0 Pep
>¢ - Hdljf supP; (¢ # j) (from (26))  (33)
J
o1 )

> € lﬁf i ;Pj(z/} #7) (supremum > average)  (34)
> max;>1 Dier (PP"[|B5™") +log 2 from (31 35
> (1 e (from (31))  (35)
This completes the proof of the lemma as stated. O

A.2 Conditional Concentration for Symmetrization

This lemma establishes the concentration properties of the "ghost" sample statistics, which is the foundation
for the symmetrization argument in Lemma A.3. This proof is now corrected to use the definitions of
Vs.ns Vons Vin consistent with [12, Eq. (7)] and our regularizer (Definition 3.2).

Definition A.7. Let G, = o(D,,). For any 7 € I, we use the following definitions:
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1. Ghost Weighted Reward: Y/ (mw) = wi(m)R}.
2. Ghost IS Estimator: V,{(w) = %Zg‘zl Y/ (7).

3. Ghost IS Weight: wi(m) = :Eﬁ;l?;
Ghost Sample Deviation (squared): V!, (m)* = L3 wl(m)?.
Conditional Expected Value: Vi, (n) = E[V/ (%) | Gu].

Population Deviation (squared): V,,(m)* = 5 Y1 Elw](m)? | X].

NS v

Higher-Order Deviation (fourth power): Vy ,,(7)* = 2 3" E[w](m)* | X;].
Note that V,(7), V, »n(7), and Vj () are G,-measurable.

Lemma A.8 (Conditional Concentration for Symmetrization). For any fized policy = € I, the following
two inequalities hold:

(a) B (|Vi(m) = Va(m)| = 2V;n(m)) < £
(b) P (Vsl)n(ﬂ')Z > 4-max {V,,(m)%, Vin(m)?}) < 7

Proof. The proof relies on the tower property and conditional concentration inequalities.

Proof of (a): We analyze the probability conditional on G,. The random variables Y{(7),...,Y, (7) are
conditionally independent given G,,. The term V/(r) — V,, () = LS (Y (m) = E[Y{ () | X;]) is a sum of
conditionally independent, mean-zero random variables. We apply the conditional Chebyshev’s Inequality.
For n = 2V}, (7)) (which is G,,-measurable):

Var(V,)(m) | Gn)

B (1730~ V)| 2 20 6a) < 2

We bound the conditional variance:

Var(V,) () | Gn) = QZVar X;)

IN

E ZE[Y;(W)? | X;] (since Var(Z) < E[Z2])

i=1
2

:nQZE )2R? | X

gnQZE 7)?-12| X;] (since R, € [0,1])

= V;J,n(ﬂ)

Substituting this into Chebyshev’s inequality:

Vpn(7")2_1
P \Qn)_m—i

By the tower property, taking the expectation over G, yields the final result < 1/4.

Proof of (b): This part bounds the concentration of the ghost sample deviation V(7). We analyze the
two cases of the max function.

Case 1: Vp(m)? > Vi, n(m)?. In this case, the bound is 4V}, ,(m)2. Since V/, (7)? is non-negative, we use
the conditional Markov’s Inequality:

E[V, . (m)? | Gl
4V, n(m)?

s

P (Vi ,(m)* 2 4Vpn(7)? | Gn) <
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By definition, E[V! (7)? | G,.] = [# ng(w)z | gn] = #Z]E[w;(ﬂ)z | X;] = Vp,n(w)z. Thus, the

probability is < 5 Vo, ”(ZT))Z =1

Case 2: V},n( )2 < Vi ()2, In this case, the bound is 4V}, ,,(7)%. We use the conditional Chebyshev’s
Inequality. Let ¢ = 4V}, ,(m)? — Vp n(7)?. By the case assumption, ¢ > 4V;2, — V2, = 3V, > 0. More
importantly, ¢ > 4th’” — V,in = 3V,3’n.

B (Va2 4Vi(m)? | 6.) = B (Vi (r) — Vy(m)? 2 ¢ [ G,) < Snenl )1 60)

g
We bound the conditional variance:
Var(VS’,n(w)2 | Gn) = Var ( Z )2 gn>
= ZVar 7)% | X;) (by conditional independence)
2 4
< Bl X1 = s 3Bl X0
= Vh’n(ﬂ')

Now we bound the denominator ¢?:
¢ = 4Viu(m)? = Vpu(m)® > 4Vip(1)? = Vi (1)? = 8V ()?
(%> (3Vin(m)?)? = Wy n(m)*
Substituting the bounds into Chebyshev’s inequality:

Var(V!,.(7)? | Gn Vi (m)? 1
P( | Gy) < L Wen("[Gn)  Vinlm)® 1
¢ Vi () 9
Since 1/9 < 1/4, the bound holds in this case as well.
In both cases, we have shown P(--- | G,) < 1/4. By the tower property, taking the expectation over G,
yields P(...) < 1/4. This completes the proof of (b). O

A.3 Symmetrization for Unbounded Processes

This lemma performs the critical symmetrization step, extending [12, Lemma B.1]. It converts the problem
of bounding the deviation of the empirical process from its mean, V,,(7) — V,,(7), into a problem of bounding
a self-normalized Rademacher process. This proof is now corrected to use the consistent, weight-based
definitions from Lemma A.8.

Definition A.9. We use the notation from Section 3.2 and Appendiz A.2.
1. Vo(n) =n~t S Y;(n) (IS Estimator)
2. Vo(m) =E[V/(x) | Gn] (Conditional Mean)
3. w(m) € R™ (Vector of original weights w;())
4. w'(m) € R™ (Vector of ghost weights wi(m))
5. Van(m) =n=Hw(m)ll2 and VI, (7) = n~t||w'(7)]2
6. V(1) = max{ Vs ,,(7), Vp.u (), Vi (), n~ Y2} (The weight-based regularizer)
Lemma A.10 (Symmetrization for Unbounded Processes). For any constant £ > 4, the following inequality

holds:
. (Sup V) = Va(m)| 5) “3 s P, (Sup Yy eilYi(m) = Y(@)] 5)

rem  Va(m) D.D, \men W@ +w(m)a T8

n

where supp, . is taken over all possible realizations of the data and ghost data, and P, is the probability
measure over €.
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Proof. The proof follows the structure of [12, Appendix C.1].
Let G,, = o(D,,). We define the event of interest:

. {Sup IAGEAAGIN 5}

mell Vn (W)

On this event, let 77 € II be a (measurable) policy that attains this supremum. 7' is G,-measurable. We
define the auxiliary events &1, &, using the ghost sample D/, :

&= {Va(xh) = V(x| 2 2Vpn(n) |
Ey 1= {Vs”n(wJ‘)2 > 4. maX{Vp,n(ﬂT)aVh,n(wT)2}} )
By Lemma A.8 (a) and (b), P(&1 | Gn) <1/4 and P(&; | G,,) < 1/4. By a union bound, P(E£NES | G,,) >
1/2.
As shown in the previous (identical) proof of this lemma,
P(E|Gn) <2-P(ENETNES | Gn)

On the event £N EF N ES, all three conditions hold.
By £ and £f (and the triangle inequality):

[Va(m®) = Vi (xh)| > Vo (xh) — Vi (xh)| = Vi (7T) = Vi ()
g
2
By &5, we have I/S’7TL(7TT)2 < 4max{V, (712, Vj, ,(71)2}. This implies Vg’n(ﬂ) < 2max{V, ,(7"), Vi n(71)}.

By definition, V,(71) > max{V; ,(7"), Vpu(71), Vi n(x)}. Therefore, V(") > max{V n(x"), V{, (x1)/2}.
Chaining these inequalities and converting to ¢s-norms:

> & Vp(rh) =2V, (7)) > (€ = 2)Vu(nh) > 2V, (x1)  (since € > 4)

Vo(r1)  (from (a))

Y

QM D v D [y

~max{Vsn ("), V], (x1)/2}  (from (b))

v

(Vs’n<7lj) + ‘/Sln(ﬂT)) (since max{a,b/2} > (a+ b)/4)

(

(@ D)llz + 1w (7")]|2)

E

(7" +w'(zD)|l2  (by triangle inequality, as w; > 0)

B

Elom E[om

>

Multiplying by n, we have shown that on £ N Ef N &Y, the following holds:

> & fwla) +w' ()l

PACOERACH)

From previous steps, and by taking the supremum inside the probability:

PE[G,) <2-P (Sup | 25 (i(m) — Y/ (m)] | € | gn)

ren [|w(m) +w/(7)ll2

Let Pz be the measure over the ghost sample D/, conditional on G,. The variables A;(7w) = Y;(7) — Y/ (n)
are conditionally symmetric about 0. Let € = {¢;}?_; be independent Rademacher variables. By standard
symmetrization arguments, Pz (sup...) is equal to Ez/ g, [Ec[1{sup... }]].

Taking the expectation of P(€ | G,,) over G,:

P(€) < 2-Eg, 2 [Pe (Sup | Y aYi(m) = Y ()] sﬂ

ren w(m) +w/(m). T8
This expected probability is upper-bounded by the supremum over all data realizations D,,, D! :

P(€) <2 sup 11%( |3 6(i(r) - Y/ ()] £>
D, ,D},

sup >
rett  [[w(m) +w/(m)ll2 8

23



A.4 Concentration of the Normalized Rademacher Process

This lemma bounds the tail probability of the self-normalized Rademacher process that emerged from the
symmetrization in Lemma A.10. This process is the key to our overlap-free argument, as we show that
the class of vectors being bounded is, by construction, contained within the 5 unit ball, regardless of the
magnitude of the IS weights.

Definition A.11. For any given data realization D,, = {(X;, A;, Ri, i)} and ghost realization D!, =
{(Xi, A}, R}, pi) i1, we define the class of vectors Fp, p; € R™:

Y(r) - Y'(r)
[[w(m) +w' ()2

Fp,.p1, = {f eER" | Inr eIl s.t. ||w(m)+w(n)|]2>0,f= } U {0} (36)

where Y (), Y'(7) are the vectors of weighted rewards and w(w), w'(m) are the vectors of IS weights.
We also define the target process and the worst-case complexity:

1. S} (F) :=supser|d iy € fil (Unnormalized Rademacher process).

2. Lsup(IL,n) :=supp p: {fOZ VIog N(e, Fp, b , de)de} (Worst-case Dudley Integral).

We recall the auxiliary lemmas: Lemma A.4 (Dudley’s Integral) and Lemma A.5 (Massart’s Concentra-
tion).

A.5 TUniform Concentration for Bounded Process

This lemma bounds "Term (ii)" of our error decomposition: the deviation of the (bounded) conditional value
function g,(x) = E[Y;(7) | X;] from its true expectation V(7). This replaces the argument of [12, Lemma
B.3], substituting Natarajan dimension with a data-dependent concentration bound based on empirical
Rademacher complexity.

Recall the related notations and definitions:

Definition A.12. Recall the dataset D, = {X;}! ;. We explicitly define the following functional classes
and random variables as functions of D, :

1. Conditional Value Class: Fy :={gr : X = [0,1] | g=(z) = Elw(A|z)R | X = z], 7 € II}.

2. Target Empirical Process: Zn(Fg) :=supser, |(Pn — P)f|. For concentration analysis, we denote this
as g(Dy) == Zp(Fy).

3. Empirical Rademacher Complexity: R (Fg) = Eelsupjez, |30 €f(Xs)| | Dy). We denote this as
h(Dy,) := Ry (Fy).

4. Empirical Dudley Integral: I,,(Fy) = fol V1og N (e, Fy, Lo(Py))de.

Lemma A.13 (Uniform Concentration for Bounded Process). For any § € (0,1), the following inequality
holds with probability at least 1 — § (over the draw of D,,):

log(4/3)

Zn(Fg) <2Rp(Fy) +3 o

Furthermore, there exists a universal constant Cy < 0o such that with probability at least 1 — §:

Z,(Fy)+3 log(4/0)

Cy
Z < —=
(7)) L

=
Proof. The proof proceeds in three steps. First, we concentrate g(D,,) and h(D,,) around their expectations
using McDiarmid’s inequality. Second, we link them via Symmetrization. Third, we bound h(D,,) using
Dudley’s chaining argument.

We analyze the sensitivity of g(D,,) and k(D) to changing a single data point X; to X. For g(D,,) =
Zn(Fy):

S

¢; = sup |g(Dy) — g(D,, with X; — X]’)| < sup

Dy, X FEF, T

Lirexs) - f(XJ’»))] <
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The last inequality holds because F, C [0,1]. For h(D,) = R, (Fy):

D/'L7XJ/. fef

Le(r(x,) - f(X;-»H <

Applying McDiarmid’s inequality (Lemma A.2) with Y ¢? < 1/n, and setting to = 1/ 10g(4/5) , we have with
probability at least 1 — §/2:
Zn <E[Zy) +to and E[R,] <Ry +to

By standard symmetrization arguments, E[Z,] < 2E[R,]. Combining this with the high-probability
bounds from Step 1 yields the first statement:

Zn <E[Z,] +to < 2E[Ry] + to < 2(Rn + o) + to = 2R, + 3to

We apply the empirical version of Dudley’s inequality [24, Theorem 2].

Ru(F,) < inf (4a+/ g N (€. Fy, Lo(P))d )

Taking o — 0, the first term vanishes, yielding R, (Fy) < %In(}'g). Substituting this into the result from

Step 2 proves the second statement. O

A.6 Proof of Theorem 3.3
Definition A.14. Let D, = {X;}!",.
1. Vo (n) = E[Viu () | X1,..., X

2. Vp(m) is the weight-based regularizer from Definition 3.2.

3. (I, n,d) =C4 ( sup(II, ) + 10g(4/5)) (data-independent constant).

4. B2(Il,n, 6, Dy,) = Cs (In(]:g) + 10g(4/5)) (data-dependent random variable).
5. ﬁ(Dn) =851 +B2(Dn)

6. StdErr,(m) = B(Dy,) - Vu(m).

We aim to prove that with probability at least 1 — &, |V;,(7) — V()| < StdErr,, () holds uniformly for
all m e IL

Proof. Step 1: Error Decomposition. For any 7 € I, we use the triangle inequality:

V() — V(w)‘ <

Va(m) = Vo ()| + [Va(m) = V()]
—_—

—_——

Term (i) Term (ii)

Step 2: Normalization. We divide by V,(7) > 0 and take the supremum over 7 € II:

- V() — V()| < su |Term (i)] . |Term (ii)]
WEE Vn(ﬂ—) o ﬂGE Vn(ﬂ) WEE Vﬂ(ﬂ)

We will bound the two terms on the right-hand side separately, each with a probability budget of §/2.
Step 3: Bounding Term (ii) (Bounded Drift). We want to bound sup, ¢y L‘;(ﬂ)l By the

definition of V, (), we have V,(r) > n~'/2 for all 7. Therefore,

[V () = V()]

|Term (i)
n_1/2 :Zn(fg)\/ﬁ

sup < sup
rell  Va(T) mell

We apply Lemma A.13 with a confidence level of §' = §/2. The lemma states that with probability at least

1-4/2,
Zo(F,) < CQI /10g 4/5 02 I (F,) +3 /logéi/é)
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Let &;; be this event. On &;;, we have:

|Term (ii)|
well Vn (ﬂ-)

<Vn - Zn(Fy)

¢ log(3/5)
<f<\/3 W(Fy) +3 2”>

= CUT(Fy) +1 [ loa(8/9)

By defining the constant Cy in Theorem 3.3 as Cs := max(C}, \/g ), this entire expression is upper-bounded
by Cs (In(]-"g) + 10g(8/6)), which is precisely the definition of 82(D,,). Thus, P(E) < 6/2.

Step 4: Bounding Term (i) (Unbounded Fluctuation). We want to bound sup, ¢y W
Let &; be the event:

We apply Lemma A.10 with £ = 88;. This gives:

8
P(&) <2 sup P, (S;L(}—Dn,Dil) > 51) =2 sup P, (S;L(]:DmDil) > ﬁ1)
D,,,Dl, Dy,D},

Now we apply Lemma ?? with a confidence level of 6g = §/4. The lemma states:

sup P, (S (]:Dn,D' ) > ( 5up(H Tl) + 10g(1/50))) < dp
DD,
By our definition of g; = C4 (Isup + log(4/6)> and our choice of o = §/4, the term inside the probability
exactly matches B;. Thus, P(&;) <260 =2-(6/4) =6/2.
Step 5: Union Bound. Let £ = &7 NES. By a union bound on the complementary events:

Thus, with probability at least 1 — §, the event £ holds. On the event £, we have for all = € II:

|V () — V()] |Term (i)] | Term (i)
nif) "\~ ==\ == V0
Vam S v, TP T,
< (861) + (B2(Dn))
This implies |V;,(7) — V(7)] < B(Dy) - Vo () = StdErr,, (), proving part (a).
Part (b) follows 1mmed1ately from Proposition 3.1 given that event (a) holds, with the trivial upper
bound of 1 coming from the bounded rewards R € [0, 1]. O

A.7 Proof of Corollary 3.5

The proof aims to establish a data-independent convergence rate by showing that, under the uniform overlap
condition for the optimal policy (Assumption 3.4), the random components 3(D,,) and V,,(7*) in Theorem 3.3
concentrate around well-behaved deterministic values. We employ a union bound over three high-probability
events, each allocated a failure probability budget of §/3.

Proof. From Theorem 3.3, we know that with probability at least 1 — §/3, the following event holds:

Ea:={L(#) <2-B(Dn) - Vu(")} (37)

where the total complexity is 8(D,,) = 851 (I, n,d/3) + B2(II,n, /3, Dy,).

Step 1: Concentration of the Regularizer V,(7*). We show that V,(7*) is of order O,(n=1/2).
Under Assumption 3.4, the weights w;(7*) are uniformly bounded almost surely by a constant C,, < oo.
This implies that all powers of the weights are also bounded: w;(7*)? < C2 and w;(7*)* < C. We apply
Bernstein’s Inequality (Lemma A.1) to each empirical term with a failure probability of d5 = §/9:
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1. For V. ,(7*): Let Z; = w;(7*)?. The variables Z; are i.i.d. and bounded in [0, C2]. Their variance is
bounded by E[Z?] < C2. By Bernstein’s inequality, with probability at least 1 — dp:

” 1
> Zi <nE[Z;] + \/2nC% log(1/05) + gcfu log(1/65)
i=1
Dividing by n? and taking the square root:

1 C2
Ven(m™) = \/n2 Z Z; < \/7”7 +0(n=3/2) = O(n~1/?)

2. For V, ,(7*): Similarly, the conditional expectations E[w;(7*)?|X;] are bounded by C2. The same

w*
Bernstein argument yields V, ,,(7*) < O(n~'/?) with high probability.
3. For Vj, ,(7*): The terms E[w;(7*)%X;] are bounded by Ci. With high probability, their empirical
average is O(1). Thus, Vi, n(7%) = (X E[wi|X;]))V/* = n=3/4(2 S E[w}|X,]))/* < O(n=3/4).
Since n~1/2 dominates n~3/4 for large n, by a union bound over these three events, with probability at least
1—0/3, event Eg holds, where there exists a constant Cy (Cy, ) such that:

€5 i {vn<7r*> < %} (38)

Step 2: Concentration of the Complexity Term 3(D,). The term f; is structurally data-
independent (it depends on the supremum over all possible datasets). The random component is 53(D,,) =
Co(Z,(Fg) + +/1og(24/4)), which depends on D,, through the empirical Dudley integral Z, (F).

We prove that 7, (F,) concentrates around its expectation using McDiarmid’s inequality. Let D,, and
Dj, be two datasets differing only in the j-th element X; — X7. The empirical La(P,) norm is || f||r2(p,) =

%2?21 f(Xi)?. Changing one point from X; to X’ changes the squared norm by at most % (since f €
[0,1]), thus we know ¢; = O(1/n). Applying McDiarmid’s inequality (Lemma A.2) with failure probability
4/3:

2t?

Setting the right-hand side to §/3 yields a deviation ¢ = O(y/log(1/6)/n). Thus, with probability at least
1 —0/3, the following event holds:

Ec = {ﬁ?(Dn> < ]E[52(Dn>] +0 ( bg(;/&)} (40)

n

We define the deterministic complexity constant So (11, n,d) := 851 + E[B2(Dy)] + O ( log(l/é)) to absorb

all these data-independent quantities.
By a union bound, with probability at least 1 — §, events £4,Ep, Ec hold simultaneously. On this joint

event:
Be(I1,n, o)
\/ﬁ

L(7) <2-B(Dy) Val(r*) < 2- Bo(ILn,5) - ¥ = 0 (

NG (41)

O

A.8 Proof of Theorem 3.6
We first fix the notations and definitions needed in the proof:
Definition A.15. We write:

1. d,(mj,m)? :=Ex UA Wd)%(a)} (the x?%-pseudo-metric).

2. (m,') -1 = Ex UA %Wd)%(a)} (the associated inner product).

3. Cy: A constant such that for all m € II, H7r||,2f1 = (m,m) -1 < Cy.
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4. M = M(e) = Npacr(e,11,d,). By definition, there exists a subset Iy = {m,...,ma} C II such that
du(mj, ) > € for all j # k.

We construct a set of M +1 "hard" problem instances Phora = {FPo, P1,...,Pu} C P(C’WJ}%). We fiz a
behavior policy p that satisfies the Cy, condition. Let A > 0 be a perturbation magnitude to be chosen later.

1. Py: (Qo, i), where Qo(x,a) =0 for all (x,a).
2. P; (forj=1,.,M): (Qj, 1), where Q;(z,a) = A- 72((;“3.

For this construction, the data D,, = {(X;, 4;, R;)}_, is drawn as X; ~ Px, A; ~ p(-|X;), and R; ~
N(Qj(Xi, A;), 0%).
Proof. We follow a standard information-theoretic argument based on Fano’s inequality [12, Appendix C.6]

to establish a lower bound on the minimax risk.
We bound the KL divergence between P; and Fy for j > 1.

D (PPM|PP™) = n- D r(Pjl|Po)

The KL divergence between two n-sample distributions is n times the KL divergence between the single-
sample distributions.

DKL(P]”PO) = E(X,A)NPO [DKL (N(Q](Xa A)7 012%) || N(QO(X7 A)a 0}2%))}
Using the known formula Dg (N (p1,02) || N (2, 0?)) = %:
(Qj(X7 A) - 0)2:|

2
203

_ QAU;EXNPX [ | talo (f((;j';))zdmm)]
_ jg;%EwX [ U ] = QAU;IIWJ-IIil

By definition of the problem class P(C.,,0%), ||7; Hi,l < Cy.

Drr(Pi||Po) = Exapy, Anp(|x) {

nA2C,,
2012{

n Rn
max Der, (P77 <

The parameter of interest is the optimal policy T} for problem P;. The risk is the suboptimality £;(7) =
Vi(m5) — Vj(#). Under P;, the value of a policy 7 is:
m(a|z)m;(alx)
Vi(r) =Ex |:/7T alz)Q;(x,a da] =A -Ex [/]
() (al)@; (. a) pos

The value is maximized when 7 is maximally correlated with 7 in the (-,-),-1 inner product. Assuming
Ilp C II and II is convex, the optimal policy 7} is m; itself, as Vj(m;) = AHﬂjHi,l > A(m,m;),~1 by
Cauchy-Schwarz. We establish the separation between P; and Py for j,k € {1,...,M},j # k.

Lj(mi) + Li(m;) = (Vi(m;) = Vi) + (Vi(mi) = Vi(m;)) (
= A(<7Tj77rj>u’1 - <7Tk77rj>u*1) + A(<7Tk77rk>u*1 - <7Tj77rk>;F1) (43
= A (lImsl12-1 = 25, s + lmel2 ) (
= Allmj — w21 = Ady(mj, mh)? (
By construction of our e-packing set Iy, d,(m;, ;)% > €2
L(mk) + Li(mj) = Ae®

This implies that max(L;(my), Lx(7;)) > 2 A€, For any estimator #, if # = 7, when the true state is j, the
risk is £;(m). This forms the basis of the Fano risk bound. The minimum risk (separation) between any
two hypotheses is 2¢/ = A2,
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We apply Lemma A.6 using the risk E[£(7)] and the separation ¢ = %AGQ.

inf sup E;[L;(7)] > € -infsupP;(L;(7) > €) (46)
T jefo,..,M} LI
1, max;>q DKL(PJ®"||PO®") + log 2
> _
> —Ae (1 Tog (47)
1.5 nA%C,/(20%) + log 2
> Z _
> 4Ae (1 og (48)

Let o = nA?C,,/(20%). The bound is Ae?(1 — %).
To make this bound non-vacuous, we require a < log M — log2. We select A to balance the terms,
assuming M > 4 (so log M > 2log2). Let oo = +log M.

nA2C, 1 20%logM  o%log M
v Dgr — A?= 2R _ &
202 4% nC,, 2nC,,
log M
A =
IR 2nCy,

This choice of A is valid as long as @); remains in the class (e.g., bounded). Substituting this A into the risk
bound:

) . 1 logM\ , log M /4 + log 2
fsupE > - 1-— 4
nfsupEIL(T)] 2 3 (”R 2nCw> ‘ ( log M (49)
1 Tog M\ , 11 . 1
> — 1—-—= M >4 log2 < —log M
> 7 (aR 2nCw> € ( 1 2) (since >4, log2 < 5 og M) (50)
1 logM ,
- 1
1677\ 2nC, © (51)
Let C3 = 125
. . log M (e)
fsupE[L > Cge? | —=——=
in bl]l)p [L(7)] > Cse w O,
This concludes the proof. O

B Experimental Details

This appendix provides the complete technical specifications required to reproduce the experimental results
presented in Section 5. The implementation complies with the theoretical assumptions outlined in Section
3, particularly regarding reward boundedness and the structure of the policy class.

B.1 Benchmark Specification

All benchmarks share a common foundational structure. The context space is 5-dimensional, with X ~
U([-1,1]%). The action space is A = [—1,1]. The observed reward is R; = r(X;, A;) + €;, where ¢; ~
N(O707210ise)'

We define the Truncated Normal distribution N7(p, 02, [a, b]) with probability density function:

Lo(=4)
oty — p(E)

o o

Ila <2 <b) (52)

o7 (23 p,0,a,b) =

where ¢(-) and ®(-) are the standard normal p.d.f. and c.d.f., respectively.
The specific functional forms for the three benchmarks are:
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Benchmark 1: BiasedBehaviorSharpPeak Designed to test learning when the optimal action lies in
a low-density tail of the behavior policy.

1. True Reward: r(z,a) = exp(—50(a — x1)?).

2. Behavior Policy: p(alz) = ¢7(a;us(x),0.35,—1,1), where the mean pp(z) = —0.8z7 — 0.15 is
systematically biased away from the optimal action a*(x) = ;.

3. Noise: 0,,0ise = 0.05.

Benchmark 2: SafetyConstrainedReward Simulates a safety-critical application where high rewards
are adjacent to catastrophic penalties.

1. True Reward: 7(z,a) = Tpqse(®, a) + Tpenaity(a), where:
Thase(z,a) = exp(—15(a — 0.1(z1 + 2))?)
Tpenalty(a) = —3-I(a > 0.4)(a — 0.4)*
2. Behavior Policy: A risky policy that frequently violates the safety constraint (a > 0.4): p(alz) =
b7(a;0.4,0.3, —1,1).

3. Noise: 0,,0i5¢ = 0.1.

Benchmark 3: SparseRewardWithNoise Tests the ability to recover a sparse signal amidst high
aleatoric noise.

1. True Reward: Let a,,,,.(z) = 0.521 +0.3z;. The reward is non-zero only in a narrow region around
a

* .
sparse*
*

7”(1‘, a) = ]I(|a’ - a;parse(x” < 015) : eXp(_lo‘a’ - asparse('r)')
2. Behavior Policy: Uniform random policy, p(alz) = U([—1,1]), providing poor, unguided coverage.
3. Noise: 0,4is¢ = 0.4 (significantly higher than other tasks).

B.2 Data Generation and Preprocessing

For each of the N = 15 random seeds, we generate a unique offline dataset D,, = {(X;, A;, R, i)}, with
n = 10,000 samples. To strictly satisfy the theoretical assumption that R € [0,1] (crucial for the validity of
the self-normalized concentration bounds), we apply min-max normalization to the training rewards:

~ Rz - minj Rj

R, = - 53
max; RB; — min; R; (53)

The behavior density values u; = pu(A4;]X;) are recorded during data generation and provided to the learning
algorithms.

B.3 Policy Network Architecture

We parameterize the stochastic policy mp(a|z) using a Beta distribution, transformed from its standard
support of [0, 1] to the action space A = [—1, 1]. The network is a Multi-Layer Perceptron (MLP) with the
following structure:

1. Input Layer: 5 units (context dimension).
2. Hidden Layers: Two fully connected layers with 64 units each, using ReLLU activation.
3. Output Layer: 2 units, corresponding to the raw parameters for the Beta distribution.

To ensure valid Beta parameters «, 8 > 1 (enforcing a unimodal distribution conducive to optimization), we
apply a Softplus activation with a bias:

a(z) = Softplus(oy (z)) + 1.0, B(x) = Softplus(oz(x)) + 1.0

The policy samples a raw action a,.q., ~ Beta(a(z), f(x)) and applies the affine transformation a = 2a,4.,, — 1
to obtain the final action a € [—1,1]. For evaluation, we use the deterministic mean of this distribution:

) =2 () -
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B.4 Optimization and Hyperparameters

All algorithms are implemented in PyTorch. Optimization is performed using Adam with a fixed learning
rate of 1 x 107

The PPL-MM algorithm (Algorithm 1) is configured with K = 20 outer MM steps. Within each outer
step, we perform Tpg = 150 inner Policy Gradient steps to maximize the surrogate objective. This yields a
total of 3,000 gradient updates, matched by the Naive PG baseline for fair comparison.

To test robustness, we evaluate four hyperparameter variants:

Table 1: Hyperparameter Variants for Robustness Analysis

Variant Name IS Clip Threshold (C;,) Denominator Clamp (e,)

Standard 50.0 1x10°°
HighClip 100.0 1x 106
LowClip 20.0 1x10°6
HighClamp 50.0 1x10°°

B.5 Statistical Metrics Derivation and Usage

To ensure the rigorous interpretability of our empirical results, we rely on a complete suite of statistical
tools designed for paired experimental designs. This subsection provides a self-contained derivation of these
metrics, justifying their selection and detailing their calculation.

Let D = {DS: )}ij\il be the set of N = 15 fixed offline datasets used across all experiments. For a given
task and hyperparameter variant, let V;'¥L and V;B25¢ denote the true policy values achieved by PPL-MM

and the Naive PG baseline on dataset Dg)7 respectively. Our primary random variable of interest is the
paired performance difference:
A; = VPPL _yBase 1 N (54)

By design, the A; are independent and identically distributed (i.i.d.) random variables with unknown true
mean pa and variance o%. Our one-sided null hypothesis for superiority is Hy : pa < 0, against the
alternative Hy : pa > 0.

B.5.1 Paired t-statistic

The paired t-test [22] is the most powerful test for ua under the assumption that the differences A; are
normally distributed, A; ~ N (ua,0%). Even if this assumption is slightly violated, with N = 15, the
Central Limit Theorem ensures that the sample mean A is approximately normal.

We first compute the sample mean and sample standard deviation of the differences:

1 N 1 N
A= _— . = e s— ; — A)2
A= ;:1: Aiy Sa=\| 7T ;:1:(Az A) (55)

The standard error of the mean difference is SE (A) = Sa/VN. The t-statistic is derived as the ratio of the
observed signal (A) to the noise (SE(A)):
A - AVN
r= o (56)
SE(A) Sa

Under Hy, this statistic follows Student’s ¢-distribution with N — 1 = 14 degrees of freedom. We compute
the one-sided p-value as p =1 — F} 14(t), where Fy 14 is the c.d.f. of the ¢14 distribution.
B.5.2 Cohen’s d (Effect Size for Paired Samples)

While the p-value indicates statistical significance (confidence that ua > 0), it relies heavily on the sample
size N. To quantify the magnitude of the improvement in a standardized, scale-free manner, we use Cohen’s
d. For paired designs, the appropriate variant is Cohen’s d [5], which standardizes the mean difference by
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the standard deviation of the differences themselves (rather than the pooled standard deviation of the raw
scores). This correctly accounts for the correlation between the paired runs. The estimator is given by:

s A

d=— o7

- (57)

Note the direct relationship ¢ = dv/N. A value of d = 1.0 indicates that the mean improvement is equal to one

full standard deviation of the run-to-run variability. In our results, values of d > 3.0 indicate an extremely
strong effect where the performance distributions of the two algorithms are almost entirely disjoint.

B.5.3 Benjamini-Hochberg FDR Control

We perform hypothesis tests for m = 12 distinct conditions (3 tasks x 4 variants). Testing each at a
significance level a« = 0.05 would inflate the probability of false positive findings. To address this, we control
the False Discovery Rate (FDR), defined as the expected proportion of false rejections among all rejected
hypotheses: FDR = E[V/R|R > 0], where V is the number of false rejections and R is the total number of
rejections.

We employ the Benjamini-Hochberg (BH) procedure [10], which is more powerful than family-wise error
rate methods (like Bonferroni) for exploratory analysis. Let p1)y < p2y < -+ < p(m) be the ordered p-
values from the 12 individual t-tests, and let Hy), ..., H(,,) be the corresponding null hypotheses. The BH
procedure finds the largest index &k such that:

k
< -
Py < o (58)

We then reject all null hypotheses H(y), ..., H(). This guarantees that FDR < « under the assumption of
independent or positively dependent test statistics.

B.6 Detailed Statistical Results

Table 2 presents the complete, granular results of our paired statistical evaluation across all 12 experimental
conditions (3 tasks x 4 variants). For each condition, we report the mean paired difference A, the 95%
confidence interval for the mean difference, the ¢-statistic from the paired t-test (df = 14), the FDR-adjusted
p-value, and Cohen’s d effect size.

Table 2: Complete Paired Statistical Results (N = 15 seeds). Mean differences (A) are calculated
as Performanceppr,_yv — Performancenaive pa. Bold values indicate statistical significance after Benjamini-
Hochberg FDR correction (o = 0.05).

Benchmark Task Variant Mean Diff. (A) 95% CI t-stat  prDR Cohen’s d
Standard 0.017 [-0.021,0.056]  0.82  0.427 0.21
BiasedBehavior HighClip 0.047 [0.008, 0.087] 226 0.054 0.58
SharpPeak LowClip -0.035 [-0.072,0.005] -1.69  0.135 -0.44
HighClamp 0.017 [-0.021,0.055]  0.82  0.427 0.21
Standard 0.350 [0.337,0.364] 4853 < 107° 12.53
SafetyConstrained ~ HighClip 0.350 [0.337,0.364] 4839 <1073 12.49
Reward LowClip 0.353 [0.339,0.366]  48.71 <1073 12.58
HighClamp 0.350 [0.337,0.364] 4853 < 107° 12.53
Standard 0.428 [0.399,0.457]  27.64 < 107? 7.14
SparseReward HighClip 0.428 [0.399,0.457] 27.64 <1073 7.14
WithNoise LowClip 0.428 [0.398,0.457]  27.64 <1073 7.14
HighClamp 0.428 [0.398,0.458]  27.64 <1073 7.14
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