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We extend the mathematical framework of “lifting” in [LL25, EL24a] to
accelerate convergence to Nonequilibrium Steady States (NESS), a regime
where the breaking of Detailed Balance Condition (DBC) renders traditional
methods ineffective. We focus on NESS generated by a weak non-conservative
perturbation. Our approach formally analyzes the full system generator
L = γR + V as a hypocoercive lift of its own effective slow, non-reversible
generator LO. To analyze its convergence, we introduce the Adiabatic Embed-
ding (Ad Embed) structure, which employs an Approximate Quadratic Form
Condition to rigorously capture the non-equilibrium perturbation as an ex-
plicitly bounded error. By adapting the Flow Poincaré inequality framework
[EGH+25, LL24] to this structure, we establish an explicit connection between
the convergence rates ν(L) and s(LO). We prove that under appropriate
structural conditions and an asymptotic regime where the non-equilibrium
perturbation is subdominant to the slow dynamics gap (η ≪ s(LO)

2), the
optimal “diffusive-to-ballistic” speedup, ν(L) = Θ(

√
s(LO)), known for equi-

librium lifts, is also achievable in this NESS setting. We validate our theoret-
ical framework with numerical experiments on both classical nonequilibrium
Langevin and quantum boundary-driven Zeno spin chain systems.
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1. Introduction

The dynamics of open quantum systems, describing entities interacting with uncontrol-
lable environments, are fundamental to virtually all areas of modern quantum physics.
When the environment is large and memoryless, the system’s evolution is often well-
approximated by a quantum Markov semigroup (QMS), generated by a Lindbladian L
[GKS76]. A central question concerns the long-time behavior: Does the system relax, and
if so, how quickly does it approach its stationary state(s)? For systems coupled to a single
thermal bath, the dynamics typically relaxes towards thermal equilibrium, characterized
by a Gibbs state σeq [HJLZ23, GHC+25]. The generator often satisfies a detailed bal-
ance condition (DBC) with respect to σeq, rendering the dynamics effectively “reversible”
[DOvdH25, RLC21]. Convergence analysis in this setting is relatively well-developed,
leveraging tools like spectral gap estimates derived from DBC [Pav14, FPSU24] or entropy
decay methods like modified logarithmic Sobolev inequalities (MLSI) [APS22, SS21].

However, many crucial scenarios involve systems driven out of equilibrium. Examples
include quantum transport setups with boundary reservoirs held at different temperat-
ures or chemical potentials [LPS22], driven-dissipative systems realizing novel quantum
phases [LB15], and autonomously stabilized quantum states achieved via reservoir en-
gineering [Sel24, RRS24, Nas25]. In such cases, the system typically evolves towards a
nonequilibrium steady state (NESS), σNESS , which breaks detailed balance condition
(i.e. L†σNESS = 0 but L is non-reversible w.r.t σNESS) and may sustain currents or
exhibit non-thermal properties [LPS22]. Analyzing convergence to NESS is significantly
more challenging than standard equilibrium tools, as the standard toolbox often provides
insufficient or overly pessimistic estimates, and the dynamics themselves present complex
behaviors [SVdPZ25], such as Zeno localization [MBHR21, PPS25], etc.

A common approach to studying such complex dynamics is to separate the fast and
slow timescales, known as adiabatic elimination (AE) [GB24, ASR16, TR25]. Given a
generator Lγ = V + γR, where R induces rapid relaxation (rate γ ≫ 1) towards its
kernel (we call it slow subspace or decoherence-free subspace HS = ker(R)), AE then
derives an effective generator LO acting solely on HS . This is usually achieved through
perturbative expansions and projector operator techniques, effectively “integrating out”
the fast variables governed by R [TR25, ASR16]. AE method, together with other highly
relevant techniques in the quantum nonequilibrium dynamical analysis toolbox, includ-
ing Schrieffer-Wolff transform [MMG22], response theory [ABFJ16], and Zeno dynamics
[PEPS18, PP21], etc., paved the way for deriving and investigating master equations that
are essential in quantum optics and reservoir engineering where eliminating fast modes
yields the desired system [Sel24]. A key observation is that the resulting LO frequently
describes nonequilibrium dynamics as well, capturing the slow physics induced by the
interplay of the perturbation V and the fast relaxation R, such as [TR25, LRR23].

While AE simplifies dynamics by focusing on the slow limit, a distinct goal in Monte
Carlo is to accelerate inherently slow dynamics, which is called lifting by mathematicians
[EL24a, LL25] and theoretical computer scientists [CLP99, ATS17]. Originating from
classical Markov chain Monte Carlo (MCMC), lifting involves embedding the original
slow state space HS into a larger space H = HS ⊕ HF , and designing a new dynamics
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Lγ on H [EL24a]. The crucial intuition is that Lγ breaks the detailed balance condition
while preserving the target equilibrium state, and thus creates a forward flux for faster
relaxation towards steady states.

In order to analyze such rapid convergence with degenerate dissipation, one usually
introduces hypocoercivity from kinetic theory [Vil09, IOS17]. The lifted generator often
takes the canonical hypocoercive form Lγ = LA + γLS , where the self-adjoint LS on
HF provides strong dissipation off the original slow subspace HS , where skew-adjoint LA

couple the slow dynamics within HS to the fast dissipation in HF [FLT25]. This engin-
eered interplay allows the lifted system to explore HS faster than the original slow pro-
cess. Most recent hypocoercivity leverages a variational version [BLW25], where space-
time/flow Poincaré inequality is derived via abstract divergence lemmas [EGH+25, LL24],
showcasing that optimally constructed lifts could achieve a diffusive-to-ballistic speedup
in L2 convergence rate, i.e. ν(Lγ) = Θ(

√
λO), where λO is the spectral gap of the original

slow reversible dynamics.
Comparing AE and lifting reveals a fascinating duality. AE starts with a full (usu-

ally hypocoercive) system L = V + γR and derives the slow effective limit LO, while
lifting drags the slow second-order effective dynamics back to the enlarged space going
up the river of overdamped limit. Such duality presents us with the possibility of filling
the gaps in each area through tools from the other. Unfortunately, such “inverse AE”
relation is currently confined to the equilibrium collapsed generator LO due to the pre-
sumptions of the lifting paradigm [EL24a], whilst AE itself routinely generates effective
non-equilibrium dynamics [LRR23, TR25, MR22]. This highlights the major gap: Can we
apply the constructive “inverse AE” principle to design accelerated dynamics converging
towards a desired NESS? Solving such a problem would provide a systematic method-
ology for accelerating convergence to NESS, crucial for efficient NESS preparation and
simulation, a task that currently lacks a constructive framework.

In this paper, we address this gap under a near-equilibrium regime, where the NESS
is generated by an equilibrium perturbed by a non-conservative external field of scale
η ≪ min(1, γ), which is treated as a fixed small parameter. Our asymptotic analysis
will later (in Sec. 6) require it to be subdominant to the slow dynamics gap. We formally
establish that the full, complex generator L = γR + V of a system with timescale sep-
aration can be rigorously analyzed as a lift of its own effective slow dynamics LO, even
when LO converges to a NESS.

Our main contribution is the formalization of the Adiabatic Embedding (Ad Em-
bed) structure, which we introduce in Section 5. This framework is built upon an
Approximate Quadratic Form Condition (Proposition 3.2) that precisely quantifies the
relationship between L and the effective generator LO, rigorously capturing the non-
conservative, non-equilibrium perturbation as an explicitly bounded error proportional
to η. We then adapt the variational framework of Flow Poincaré inequalities (Theorem
6.3) to this new structure. This allows us to prove our central theoretical result (Corollary
6.2): under specific structural conditions derived from the AE and the asymptotic regime
η ≪ s(LO)

2, this non-equilibrium lift achieves the optimal “diffusive-to-ballistic” quad-
ratic speedup, ν(L) = Θ(

√
s(LO)), demonstrating that this acceleration is not limited

to reversible systems.

3



The paper is organized as follows. In Section 2, we review the preliminaries for
Quantum Markov Semigroups, ergodicity, the KMS inner product, and the concept of
hypocoercivity. In Section 3, we employ the Generalized Schrieffer-Wolff formalism to
rigorously derive the effective slow generator via adiabatic elimination, which forms the
basis for our abstract lift conditions. Section 4 provides the abstract mathematical
framework for semigroup convergence. In Section 5, we formally define the Ad Embed
Structure. Section 6 contains our main theoretical results, including the derivation of
both upper and lower bounds on the convergence rate of the lifted generator, culmin-
ating in the proof of optimal quadratic speedup. In Section 7, we validate the entire
framework with two canonical non-equilibrium examples—classical Langevin dynamics
and a quantum Zeno-limit spin chain—providing both rigorous verification and support-
ing numerical experiments. Finally, Section 8 concludes with a summary and discussion
of future outlook. Detailed proofs are deferred to the Appendices A-E.

2. Preliminaries

In this section, we introduce the foundational concepts and properties required through-
out the paper. We provide a concise overview of Quantum Markov Semigroups, ergodi-
city, and the KMS inner product, with a particular focus on the role of hypocoercivity.

Throughout, we will use the following notations.
Let H be a finite-dimensional Hilbert space and B(H) be the associated algebra of

linear operators. We denote the identity element by 1 ∈ B(H) and the identity map
by id. The adjoint of an operator X ∈ B(H) is X∗. The standard Hilbert-Schmidt
(HS) inner product on B(H) is given by ⟨X,Y ⟩ = tr(X∗Y ), with the induced norm
∥X∥ =

√
⟨X,X⟩. A quantum state (or density operator) is an element ρ ∈ B(H)

satisfying ρ ⪰ 0 and tr(ρ) = 1. The set of all quantum states is D(H), and the subset
of full-rank states is D+(H). The adjoint of a superoperator Φ : B(H) → B(H) with
respect to the HS inner product is written as Φ†. We use standard asymptotic notations
O(·), Ω(·), and Θ(·).

2.1. Quantum Markov Semigroups and Ergodicity

A Quantum Markov Semigroup (QMS) (Pt)t≥0 is a semigroup of completely positive
and trace-preserving (CPTP) maps on B(H). Its generator, the Lindbladian, is defined
by L := limt↓0

Pt(X)−X
t (in the Heisenberg picture) and has the Gorini-Kossakowski-

Sudarshan-Lindblad (GKSL) form:

L(X) = i[H,X] +
∑
α

(
L∗
αXLα − 1

2
{L∗

αLα, X}
)
. (2.1)

Here, H is the self-adjoint system Hamiltonian, and {Lα} are the jump operators de-
scribing environmental interaction.

To characterize the long-time behavior of Pt = exp(tL), we introduce two key sub-
spaces: the fixed point space F(L) = ker(L) and the decoherence-free subal-
gebra N (L) := {X ∈ B(H) | Pt(X

∗X) = Pt(X)∗Pt(X),∀t ≥ 0}. Since F(L) is a
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von Neumann subalgebra, there exists a unique CPTP projection onto it, denoted by
EF : B(H) → F(L), which is called the conditional expectation.

Lemma 2.1 (Ergodicity Criterion). Let Pt be a QMS with an invariant state σ ∈ D+(H).
The semigroup converges to the conditional expectation onto the fixed points, limt→∞ Pt =
EF , if and only if the decoherence-free subalgebra coincides with the fixed point space, i.e.,
N (L) = F(L).

The proof can be found in [FV82, Theorem 3.3 and 3.4]. A QMS is called ergodic if
this condition holds and primitive if it has a unique invariant state σ. For a primitive
semigroup, the limit is EF (X) = tr(σX)1.

Lemma 2.2 (Ergodic Spectrum). An ergodic QMS is characterized by a generator L that
has no purely imaginary eigenvalues, i.e., every non-zero eigenvalue has a strict negative
real part.

This result, derived from [CSU15, Theorem 29 and Proposition 31], ensures asymptotic
stability in the sense that any initial state converges to the steady state subspace.

2.2. Convergence Metrics and KMS Structure

For a primitive QMS with a full-rank invariant state σ ∈ D+(H), we define a family of
weighted inner products on B(H) parameterized by s ∈ [0, 1]:

⟨X,Y ⟩σ,s := tr(σsX∗σ1−sY ). (2.2)

The cases s = 1 and s = 1/2 are known as the Gelfand-Naimark-Segal (GNS)
and Kubo-Martin-Schwinger (KMS) inner products, respectively. The norm in-
duced by the KMS inner product is central to our analysis and is written as ∥X∥2,σ :=√
⟨X,X⟩σ,1/2. We denote the orthogonal complement of the fixed-point space F(L) with

respect to the KMS inner product as F(L)⊥.
The convergence rate is determined by the “gaps” of the generator L, as defined below.

Definition 2.1 (Spectral and Singular Value Gaps). Let L be an ergodic generator with
invariant state σ.

1. The spectral gap is the smallest real part of non-zero eigenvalues of −L:

λ(L) := inf {Re(λ) | λ ∈ Spec(−L) \ {0}} . (2.3)

2. The singular value gap is the smallest non-zero singular value of L relative to
the KMS inner product:

s(L) := inf
{
∥L(X)∥2,σ | X ∈ F(L)⊥, ∥X∥2,σ = 1

}
. (2.4)
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The spectral gap λ(L) determines the sharp asymptotic exponential rate of convergence
to the steady state. The singular value gap s(L), on the other hand, characterizes the
instantaneous rate of dissipation for observables orthogonal to the fixed-point space. For
a generator L that is self-adjoint with respect to the KMS inner product, these two
gaps coincide: λ(L) = s(L). However, for non-self-adjoint generators, we only have the
inequality s(L) ≥ λ(L). The relation between λ and s is also discussed in [Cha25, Section
1.4].

We quantify the convergence speed using the following metrics:

Definition 2.2 (Mixing and Relaxation Time). The L1-mixing time is defined using
the trace norm on states:

tmix(L) := inf

{
t ≥ 0 | sup

ρ∈D(H)
∥P†

t (ρ)− σ∥tr ≤ e−1

}
, (2.5)

and the L2-relaxation time is defined using the KMS norm on observables:

trel(L) := inf

{
t ≥ 0 | sup

X∈F(L)⊥

∥Pt(X)∥2,σ
∥X∥2,σ

≤ e−1

}
. (2.6)

These two times are related by tmix(L) ≤ C(σ)trel(L), where C(σ) depends weakly on
the invariant state σ [LL25, Appendix B]. In this work, we will focus on analyzing the
relaxation time trel.

2.3. Hypocoercivity

For a general ergodic QMS, the convergence to steady state is described by:

∥Pt(X)− EF (X)∥2,σ ≤ Ce−νt∥X − EF (X)∥2,σ, (2.7)

where C ≥ 1 and ν > 0. The sharp asymptotic rate is ν = λ(L) from [EN00].

Definition 2.3 (Coercivity and Hypocoercivity). An ergodic QMS is coercive if (2.7)
holds with C = 1. It is hypocoercive if it holds for C ≥ 1, and strictly hypocoercive
if C > 1 is necessary.

Coercivity implies λ(L) = s(L) and that all modes relax at a uniform exponential rate.
Strict hypocoercivity arises when some modes are not directly dissipated (s(L) might be
large) but must be mixed by the oscillatory part of the dynamics into dissipative channels,
resulting in a slower asymptotic rate λ(L).

To characterize this mechanism, we define the adjoint of the Lindbladian L† with
respect to the KMS inner product:

⟨X,LY ⟩σ,1/2 = ⟨L†X,Y ⟩σ,1/2, ∀X,Y ∈ B(H). (2.8)
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We then decompose L into its self-adjoint (dissipative) and skew-adjoint (oscillatory)
parts relative to this KMS structure:

S =
L+ L†

2
, A =

L − L†

2
. (2.9)

In a strictly hypocoercive system, there exist observables in ker(S) that are not steady
states (i.e., not in F(L)). The following lemma makes this precise. Recall that we only
consider finite dimensional Hilbert space.

Lemma 2.3 (Criterion for Strict Hypocoercivity). For an ergodic QMS, the fixed-point
space is a subspace of the dissipative kernel, F(L) ⊂ ker(S). The semigroup is strictly
hypocoercive if and only if this inclusion is strict:

dimker(S) > dimF(L). (2.10)

Proof. A coercive system satisfies −Re⟨X,LX⟩σ,1/2 ≥ ν∥X − EFX∥22,σ for all X ∈
F(L)⊥. By definition of S, this is equivalent to −⟨X,SX⟩σ,1/2 ≥ ν∥X − EFX∥22,σ. This
inequality implies that any element in the kernel of S must also be a fixed point, forcing
ker(S) = F(L). Strict hypocoercivity arises precisely when this condition is violated.
The full proof is in Appendix A.1.

Finally, the relaxation time and decay rate are fundamentally linked to the singular
value gap, s(L).

Lemma 2.4 (Singular Value Gap Bounds). Let s(L) be the singular value gap of an
ergodic generator L. The constants in (2.7) satisfy:

ν ≤ (1 + logC)s(L) and trel ≥
1

2s(L)
. (2.11)

A rigorous proof of this relationship is provided in [LL24, Lemma 2.5].

3. Adiabatic Elimination and the Effective Generator

To explicitly construct a lifting for a target slow process, we first need a systematic way
to derive such slow dynamics from a larger, more complex system. This is precisely
the goal of Adiabatic Elimination (AE) [TR25, ASR16]. AE is a general framework
for deriving effective dynamics in systems with time-scale separation, encompassing well-
known limits such as the overdamped limit in classical Langevin dynamics [IOS17, MR22]
and the Zeno limit in open quantum systems as special cases [PEPS18, PP21].

We consider a system described by a Lindbladian exhibiting a clear separation of times-
cales, characteristic of singular perturbation problems [Tik52, Ver05], and decompose the
generator as:

L = γR+ V, (3.1)
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where γ ≫ 1 is a large parameter governing the time-scale separation. The “fast” gener-
ator R is assumed to be a self-adjoint dissipative superoperator that is stable, meaning
its non-zero eigenvalues have strictly negative real parts (i.e., it has a strictly positive
spectral gap λ(R) > 0). The “perturbation” generator V contains the remaining dynam-
ics. We decompose it as V = Lham + ηLpert, where Lham is a skew-adjoint Hamiltonian
dynamics and Lpert is a non-conservative perturbation. The parameter η > 0 is a fixed,
small parameter quantifying the strength of the non-conservative dynamics. Our sub-
sequent analysis will treat η as a fixed parameter, yielding bounds that explicitly depend
on it. The specific asymptotic scaling of η required to achieve optimal quadratic speedup
will be introduced and analyzed in Section 6.

In the limit γ → ∞, the fast dynamics et(γR) force the system to rapidly decay onto the
kernel of R, which we will refer to as the slow subspace HS := ker(R). The dynamics
within this subspace, effectively governed by V (to second order), are the “slow” dynamics
we aim to isolate and subsequently accelerate.

3.1. The Generalized Schrieffer-Wolff Formalism

To rigorously derive the effective dynamics in a singular perturbation limit, such as adia-
batic elimination, we employ the Generalized Schrieffer-Wolff (SW) formalism for
dissipative systems [Kes12]. This method provides a systematic perturbative expansion
for an effective generator that acts solely on a “slow” subspace of interest, decoupling it
from the “fast” degrees of freedom.

Let ϵ = 1/γ. We consider a general Lindbladian generator L that can be partitioned
into an unperturbed part R and a perturbation V, scaled by a small dimensionless para-
meter ϵ:

L = R+ ϵV. (3.2)

For the general GSW derivation, the operators R and V do not need to be self-adjoint or
skew-adjoint, respectively. However, we note that our subsequent convergence analysis
in Section 6 will indeed require R to be self-adjoint.

The unperturbed generator R defines the “slow” and “fast” subspaces as the kernel of
R and its orthogonal complement, i.e.,

HS = ker(R), HF = ker(R)⊥. (3.3)

We also define the spectral projectors, PS and PF , which project onto the slow (HS) and
fast (HF ) subspaces, in a constructive way, namely:

PS :=
1

2πi

∮
γ0

(z −R)−1dz, PF := 1− PS , (3.4)

where γ0 is a small contour in the complex plane enclosing only the zero eigenvalue. Any
superoperator A can then be decomposed into its block-diagonal part Adiag = PSAPS +
PFAPF and its block-off-diagonal part Aoffdiag = PSAPF + PFAPS .
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The SW method seeks a non-unitary similarity transformation, U = eS , that “de-
couples” the slow and fast subspaces. The generator S of this transformation is chosen
to be purely block-off-diagonal (Sdiag = 0). This transformation defines a new generator
L = eSLe−S that is, by construction, perfectly block-diagonal (Loffdiag = 0). The effect-
ive generator governing the slow subspace is then precisely the PSLPS block of this new,
decoupled generator: Leff = PSLPS . This Leff describes the dynamics within the slow
subspace, as it evolves independently of the fast subspace in this transformed frame. The
SW formalism provides an exact, non-perturbative expression for L.

Theorem 3.1 (SW Effective Generator Formula). The block-diagonal transformed gen-
erator L = Ldiag is given exactly by:

L = Ldiag + tanh(Ŝ/2)Loffdiag, (3.5)

where L = Ldiag+Loffdiag is the decomposition of the full generator, and Ŝ is the adjoint-
action superoperator Ŝ(A) = [S, A]. The effective generator for the slow subspace is
Leff = PSLPS.

Proof. The proof, based on the derivation in [Kes12], is provided in Appendix B.1.

This exact formula’s primary utility is that it can be expanded as a power series in the
perturbation parameter ϵ, yielding a systematic expansion for Leff.

We note that the GSW transformation U = eS is a similarity transformation, not
a unitary one. Consequently, it does not, in general, preserve the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) form (for situations like [MBHR21, Appendix C], a stand-
ard GKSL form for effective dynamics is inaccessible). The resulting effective generator
Leff is not guaranteed to be the generator of a completely positive and trace-preserving
(CPTP) semigroup. However, in many physical systems, such as the examples presen-
ted in Section 7, the derived effective generator does retain the Lindblad form. For our
abstract framework, we will add the assumption that Leff generates a valid QMS when
necessary.

Theorem 3.2 (SW Perturbative Expansion). The effective generator Leff = PSLPS has
the perturbative expansion Leff =

∑∞
n=0 ϵ

nLeff
n . The first three non-trivial orders are given

by:

Leff
1 = PSVPS ≡ VS (3.6)

Leff
2 = −PSVPFR+PFVPS ≡ −V−R+V+ (3.7)

Leff
3 = V−R+VFR+V+ − 1

2

{
VS ,V−(R+)2V+

}
+

(3.8)

where R+ ≡ (PFRPF )
−1 is the inverse of R on the fast subspace HF , and we use the

compact notation V− = PSVPF , V+ = PFVPS, VS = PSVPS, and VF = PFVPF ; i.e.,
in block matrix form

V =

(
VS V−

V+ VF

)
(3.9)
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Proof. These formulas are derived by systematically expanding both the generator S and
the effective generator L in powers of ϵ and matching terms. A detailed derivation for
the first two orders is provided in Appendix B.2.

3.2. The Effective Generator via Adiabatic Elimination

We now apply the Generalized Schrieffer-Wolff (SW) formalism, introduced in Section 3.1,
to our specific problem of adiabatic elimination. Our starting point is the full Lindbladian
generator L = γR + V, where γ ≫ 1 represents the large timescale separation. Here,
R is the self-adjoint fast dissipative part, and V contains the remaining dynamics. The
slow subspace HS is the kernel of the fast dynamics, HS = ker(R).

To leverage the standard SW expansion theorems, we first rescale the generator to
introduce a small perturbation parameter ϵ = 1/γ. This yields a rescaled generator
L′ = 1

γL = R + ϵV. Correspondingly, the slow space projector is PS (the projector
onto HS), and the fast space projector is PF = 1− PS . The inverse of the unperturbed
generator restricted to the fast subspace, required by the SW formulas, is precisely the
pseudo-inverse R+ ≡ (PFRPF )

−1.
The SW formalism provides a perturbative expansion for the effective generator L′

eff =
PSL

′PS acting on the slow subspace of the rescaled system, where L′ = eSL′e−S . The
effective generator Leff for the original timescale t is then recovered by reversing the
scaling, Leff = γL′

eff. Applying the expansion formulas yields the following result:

Theorem 3.3 (Effective Generator via Adiabatic Elimination). Let L = γR + V, and
let PS be the orthogonal projection onto the slow subspace HS := ker(R). The effective
generator Leff governing the dynamics on HS has the perturbative expansion:

Leff = L(1) +
1

γ
L(2) +O(1/γ2), (3.10)

where the first- and second-order terms are explicitly given by:

L(1) = PSVPS (3.11)

L(2) = −PSVR+VPS . (3.12)

Here, R+ = (PFRPF )
−1 is the pseudo-inverse of R on the fast subspace HF = H⊥

S . The
terms L(1) and L(2) correspond precisely to the terms Leff

1 and Leff
2 derived in Theorem

3.2, respectively.

Proof. The derivation involves applying the general SW expansion formulas stated in
Theorem 3.2 to the rescaled generator L′ = R + ϵV, followed by reversing the time
scaling. The detailed derivation can be found in Appendix B.3.

3.3. Approximation Error

The adiabatic elimination procedure provides a systematic way to approximate the full
system dynamics Pt = exp(tL) by the dynamics restricted to the slow subspace HS . The
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full effective generator Leff, computed to all orders, captures these slow dynamics exactly
(up to the similarity transformation), but its computation is generally intractable.

In practice, we often truncate the expansion at a certain order. When the first-order
term L(1) = PSVPS vanishes, the dominant slow dynamics are captured by the second-
order effective generator L̂eff := 1

γL
(2) = − 1

γPSVR+VPS . The semigroup generated by
this approximation is Peff

t = exp(tL̂eff).
It is crucial to quantify the error incurred by this approximation. Specifically, we

want to bound the difference between the actual state X(t) = PtX(0) starting in the
slow subspace (X(0) ∈ HS) and the state predicted by the second-order approximation
Xeff(t) = Peff

t X(0).

Theorem 3.4 (Approximation Error of AE Dynamics). Let Pt = exp(tL) be the QMS
with generator L = γR + V, where R is self-adjoint with a spectral gap λR > 0 on the
fast subspace HF := ker(R)⊥. Assume L(1) = PSVPS = 0 and that γ is sufficiently large
such that γλR > ∥V∥. Let X(0) ∈ HS, X(t) = PtX(0), and Xeff(t) = exp(tL̂eff)X(0)

where L̂eff = 1
γL

(2). Then for any t ≥ 0, the approximation error is bounded with respect
to the KMS norm by:

∥X(t)−Xeff(t)∥2,σ ≤
C ′
V

γλR

(
1 + t

(
∥V∥+ ∥V∥2

C ′
V

))
∥X(0)∥2,σ, (3.13)

where C ′
V = ∥V∥

1−∥V∥/(γλR) is a constant of order O(∥V∥).

Proof. The proof involves decomposing the error into components within the slow and
fast subspaces. The fast component is bounded uniformly in time using a Grönwall’s
inequality for Volterra integral equations, which in turn leads to a bound on the slow
component that grows only linearly in t. The detailed derivation is provided in Appendix
B.4.

This theorem establishes that the error between the true dynamics and the second-
order adiabatic elimination approximation is of order O(1/γ). Such bounds are charac-
teristic of secular approximations on Nakajima–Zwanzig equation [MBHR21, Appendix
B], which are expected to be accurate for timescales t such that t/γ ≪ 1, that is, dissipa-
tion is far stronger than the correlations. As our main theoretical results on acceleration
(Section 6) rely on abstract structural conditions rather than this explicit approximation
bound, this result suffices to justify the identification of L̂eff as the correct effective gen-
erator, as [LL25, Proposition 2.12] does in the equilibrium case. For more discussions on
secular approximation and such an error, please refer to [MBHR21, Sal24].

Remark 3.1 (Origin of the O(γ−1) Trajectory Error). It is crucial to distinguish between
the accuracy of the effective generator and that of the state trajectory. The GSW formal-
ism (Theorem 3.3) provides an expansion for Leff that is accurate to O(γ−2) for the gen-
erator itself. However, this Leff describes dynamics on the exact invariant slow manifold.
This manifold is a perturbation of the uncoupled slow subspace HS = ker(R), related
by the similarity transformation U = eS . As shown in the proof of Theorem B.2, the
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generator S is of order O(ϵ) = O(γ−1), implying U = 1+O(γ−1). The dominant O(γ−1)
error in Theorem 3.4 arises directly from this discrepancy: the state X(t) = PtX(0)
immediately develops an O(γ−1) component in the fast subspace HF , a “leakage” that is
not captured by the approximate semigroup Peff

t , which acts only on HS .

3.4. Abstraction of Adiabatic Elimination Structure

The adiabatic elimination procedure reveals a fundamental relationship between the full
dynamics L and the effective slow dynamics Leff. To formalize this relationship for our
convergence analysis, we define the rescaled effective generator LO := γL̂eff. When the
first-order term L(1) vanishes, this becomes LO = −PSVR+VPS .

The following propositions abstract the essential algebraic structure derived from AE.
This structure will form the basis of our Adiabatic Embedding framework in Section 4.

For the analysis, we must fix a Hilbert space structure that is independent of the
variable γ. We treat η > 0 as a fixed parameter.

1. Let HS = ker(R) be the slow subspace and HF = H⊥
S be the fast subspace.

2. Let σO be the (fixed, η-dependent) NESS of the effective generator LO acting on
HS . We define the inner product on HS as ⟨·, ·⟩HS

:= ⟨·, ·⟩σO,1/2.

3. Let σR be the invariant state of the fast dynamics (e.g., the Maxwell-Boltzmann
distribution in the Langevin case).

4. We define the fixed reference inner product on the full space H = HS ⊕HF using
the limiting product state σ∞ = σO ⊗ σR as in [CHL24, MR22]. We denote this
inner product by ⟨·, ·⟩H := ⟨·, ·⟩σ∞,1/2.

With this definition, the projection PS is orthogonal, R is self-adjoint, and for any
A,B ∈ HS , the inner products are identical: ⟨A,B⟩H = ⟨A,B⟩HS

. We will use ∥ · ∥ for
the norm on H.

We now focus on the common scenario where the first-order term vanishes, L(1) =
PSVPS = 0.

Proposition 3.1 (Orthogonality Condition). Assume L(1) = PSVPS = 0. Then the
perturbation V maps the slow subspace HS to the fast subspace HF . Equivalently, for all
X,Y ∈ HS, the perturbation satisfies:

⟨X,VY ⟩H = 0. (3.14)

Proof. This condition is a direct restatement of the vanishing of the first-order effective
generator L(1). Since X,Y ∈ HS , the orthogonal projection PS acts as the identity on
them. Therefore, ⟨X,VY ⟩H = ⟨PSX,VPSY ⟩H = ⟨X, (PSVPS)Y ⟩H = ⟨X,L(1)Y ⟩H = 0.
This implies that VY , for Y ∈ HS , must be orthogonal to all X ∈ HS , meaning VY ∈
HF .

12



The following proposition provides the central quantitative estimate. It bridges the
two spaces, relating the quadratic form of the full generator’s action (on H) to the
magnitude of the effective generator (on HS), and explicitly isolates the non-equilibrium
perturbation as a bounded error term.

Before start, we establish the stability of the quadratic form associated with the full
generator L by bounding its deviation from the effective dynamics. This bound is ex-
pressed explicitly in terms of the spectral gap of the target (perturbed) effective generator,
s(LO), and the dissipation rate λR.

Assumption 3.1 (Structural Prerequisites). Let H = HS ⊕HF be a finite-dimensional
Hilbert space. Let L = γR+ V be a generator with V = Lham + ηLpert. We assume:

1. Dissipativity and Gap: The operator R is self-adjoint and non-positive with
ker(R) = HS . The restriction −R|HF

is strictly positive definite with smallest
eigenvalue λR > 0. Consequently, the inverse S := (−R|HF

)−1 satisfies ∥S∥ = λ−1
R .

2. Coupling Structure: The unperturbed coupling Lham is skew-adjoint on H, while
the perturbation Lpert is a bounded linear operator.

3. Effective Spectral Gap: Let LO(η) := −PSVSVPS be the full effective generator.
We assume that LO(η) admits a non-trivial singular value gap s(LO) > 0 on the
orthogonal complement of its kernel within HS .

4. Kernel Stability: The dimension of the kernel dim(ker(LO(η))) is constant for
all η in the domain of consideration.

Remark 3.2. This kernel stability condition is physically equivalent to assuming that the
non-conservative perturbation does not alter the ergodicity class of the effective dynamics
(e.g., by merging previously disconnected subspaces). In standard NESS applications
(e.g. examples in Section 7) with unique steady states, this holds trivially.

Such an assumption leads to the following quantitative relationship:

Proposition 3.2 (Approximate Quadratic Form). Let the operators satisfy Assumption
3.1. Define the dimensionless perturbation constants:

Klin := 2∥Lham∥λ−1
R ∥Lpert∥, (3.15)

Kquad := ∥Lpert∥2λ−1
R . (3.16)

Let Q0 := −PSLhamSLhamPS. Define the operator square deviation constant:

Ksq := 2∥Q0∥(Klin +Kquad) + (Klin +Kquad)
2. (3.17)

Let the critical perturbation threshold be defined by the target gap: ηcrit := min
(
1, s(LO)2

2Ksq

)
.

Then, for all η ∈ [0, ηcrit] and all vectors X,Y ∈ HS, there exists a composite constant
CAQF such that:

|⟨LX,SLY ⟩H − ⟨X, |LO|Y ⟩HS
| ≤ ηCAQF ∥X∥H∥Y ∥H. (3.18)
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The constant CAQF is given explicitly by:

CAQF := Klin + ηKquad +
Ksq√
2s(LO)

. (3.19)

Proof. The proof proceeds by bounding the deviation of the bilinear form on the full
space and then utilizing the spectral stability of the effective generator to bound the
operator square root.

Let X,Y ∈ HS . Since HS = ker(R), we have LX = VX. Expanding the coupling
term yields:

⟨LX,SLY ⟩H = ⟨(Lham + ηLpert)X,S(Lham + ηLpert)Y ⟩H. (3.20)

We separate this into the unperturbed term and an error term Eη(X,Y ):

⟨LX,SLY ⟩H = ⟨LhamX,SLhamY ⟩H + Eη(X,Y ), (3.21)

where Eη(X,Y ) collects all terms dependent on η. Using the Cauchy-Schwarz inequality
and the definition ∥S∥ = λ−1

R :

|Eη(X,Y )| ≤ η
(
2∥Lham∥λ−1

R ∥Lpert∥+ η∥Lpert∥2λ−1
R

)
∥X∥H∥Y ∥H (3.22)

= η(Klin + ηKquad)∥X∥H∥Y ∥H. (3.23)

The unperturbed term corresponds to the quadratic form of Q0. Since Lham is skew-
adjoint and S is self-adjoint positive:

⟨LhamX,SLhamY ⟩H = ⟨X, (−PSLhamSLhamPS)Y ⟩HS
= ⟨X,Q0Y ⟩HS

. (3.24)

Since Q0 is positive semi-definite, Q0 = |Q0|. Thus:

|⟨LX,SLY ⟩H − ⟨X, |Q0|Y ⟩HS
| ≤ η(Klin + ηKquad)∥X∥H∥Y ∥H. (3.25)

We define the positive operators A := LO(η)
†LO(η) and B := Q2

0. The target operator
is |LO| =

√
A, and the unperturbed approximation is |Q0| =

√
B. The difference in

squared operators, A−B, arises from the perturbation ∆η = LO(η)− (−Q0). The norm
is bounded by:

∥A−B∥ ≤ ηKsq. (3.26)

We now analyze the spectra to apply the Lipschitz continuity of the square root. By
Assumption 3.1.3, the non-zero spectrum of A is bounded below by s(LO)

2:

σ(A) \ {0} ⊆ [s(LO)
2,∞). (3.27)

Using Weyl’s inequality and the Kernel Stability assumption, the non-zero spectrum of
the unperturbed operator B satisfies:

min(σ(B) \ {0}) ≥ min(σ(A) \ {0})− ∥A−B∥ ≥ s(LO)
2 − ηKsq. (3.28)
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Given the condition η ≤ s(LO)2

2Ksq
, we have ηKsq ≤ 1

2s(LO)
2. Therefore:

min(σ(B) \ {0}) ≥ 1

2
s(LO)

2. (3.29)

Both spectra (excluding zero) are contained in the interval [µ,∞) with µ = 1
2s(LO)

2. The
operator function f(t) =

√
t is Lipschitz continuous on [µ,∞) with constant L = 1

2
√
µ .

Substituting µ:

L =
1

2
√
s(LO)2/2

=
1√

2s(LO)
. (3.30)

Applying this Lipschitz bound to the operator norm difference:

∥|LO| − |Q0|∥ = ∥
√
A−

√
B∥ ≤ 1√

2s(LO)
∥A−B∥ ≤ η

Ksq√
2s(LO)

. (3.31)

We combine the bilinear bound (3.25) and the operator root bound via the triangle
inequality:

|⟨LX,SLY ⟩H − ⟨X, |LO|Y ⟩HS
| ≤ |⟨LX,SLY ⟩H − ⟨X, |Q0|Y ⟩HS

|+ |⟨X, (|Q0| − |LO|)Y ⟩HS
|

(3.32)

≤ η(Klin + ηKquad)∥X∥H∥Y ∥H + η
Ksq√
2s(LO)

∥X∥H∥Y ∥H

(3.33)

= η

(
Klin + ηKquad +

Ksq√
2s(LO)

)
∥X∥H∥Y ∥H. (3.34)

Defining the term in parentheses as CAQF completes the proof.

These two propositions abstract the core structure resulting from adiabatic elimination
(under the L(1) = 0 assumption). They establish that the perturbation V acts as an
orthogonal coupling and that the resulting second-order dynamics LO can be related
back to the action of the full generator L via a quadratic form that is stable up to an
O(ηs(LO)

−1) error. This structure is precisely what the lifting construction leverages.

4. Abstract Framework for Semigroup Convergence

This section details the abstract mathematical framework used to analyze the convergence
properties of Markovian dynamics, particularly in the context of lifting. We rely on the
theory of strongly continuous semigroups on Hilbert spaces, which provides the necessary
tools to handle the operators encountered in open quantum systems.

In this section, we introduce the following notations.
Let H be a Hilbert space with inner product ⟨·, ·⟩H and induced norm ∥ · ∥H. All

operators are assumed to be densely defined and potentially unbounded. For an operator
(T,Dom(T )), we often write T when the domain is clear from context. The adjoint of T
is T ∗, and the operator norm is denoted by ∥T∥ := ∥T∥H→H̃.
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4.1. Abstract Markov Semigroups and Generators

We model the system’s evolution using a contractive strongly continuous semigroup
(or C0-semigroup), denoted by {Pt}t≥0, acting on H. This family of operators satisfies
the following standard properties:

1. P0 = id (identity operator).

2. PsPt = Ps+t for all s, t ≥ 0 (semigroup property).

3. For every X ∈ H, the map t 7→ PtX is continuous (strong continuity).

4. ∥Pt∥ ≤ 1 for all t ≥ 0 (contractivity).

The dynamics generated by such a semigroup are governed by its generator, (L,Dom(L)),
a closed, densely defined operator. The generator is defined by the limit

LX := lim
t↓0

PtX −X

t
,

for all X in its domain Dom(L) ⊂ H for which this strong limit exists. Key properties
relevant to Markovian evolution are summarized below.

Lemma 4.1 (Properties of Contractive C0-Semigroups). Let {Pt}t≥0 be a contractive
C0-semigroup on H with generator (L,Dom(L)).

1. Well-posedness: For any initial state X0 ∈ Dom(L), the solution Xt := PtX0 to
the abstract Cauchy problem ∂tXt = LXt exists, is unique, remains in Dom(L) for
all t ≥ 0, and is continuously differentiable.

2. Dissipativity: The generator L is dissipative, meaning Re⟨X,LX⟩ ≤ 0 for all
X ∈ Dom(L). Consequently, its spectrum σ(L) is contained in the closed left half
of the complex plane, {λ ∈ C | Reλ ≤ 0}.

3. Steady Subspace: The set of fixed points, F := ker(L), forms a closed subspace of
H. Let EF denote the orthogonal projection onto F . The orthogonal complement
F⊥ is invariant under the semigroup dynamics, i.e., Pt(F⊥) ⊆ F⊥ for all t ≥ 0.

These are standard results in semigroup theory, detailed for instance in [EN00]. The
dissipativity property is fundamental, ensuring that the norm ∥Xt∥ does not grow over
time.

4.2. Convergence to Steady State: Coercivity and Hypocoercivity

We are primarily interested in the rate at which the system approaches its steady state
configuration. Assuming the semigroup converges strongly to the steady-state projection,
limt→∞ Pt = EF , we characterize the speed of this convergence.

Definition 4.1 (Modes of Convergence). A contractive C0-semigroup {Pt}t≥0 converging
to EF is said to exhibit:
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1. Coercivity if there exists a rate ν > 0 such that for all X ∈ H:

∥PtX − EFX∥H ≤ e−νt∥X − EFX∥H. (4.1)

2. Hypocoercivity if there exist a rate ν > 0 and a constant C ≥ 1 such that for all
X ∈ H:

∥PtX − EFX∥H ≤ Ce−νt∥X − EFX∥H. (4.2)

The system is termed strictly hypocoercive if the inequality holds only for some
C > 1.

The optimal rate ν in these inequalities corresponds to the spectral gap λ(L) of the
generator.

Coercivity represents the simplest convergence behavior, where all deviations from the
steady state decay uniformly at an exponential rate. This is typically linked to a direct
dissipativity condition on the generator itself:

−Re⟨X,LX⟩ ≥ ν∥X − EFX∥2H, ∀X ∈ Dom(L). (4.3)

Strict hypocoercivity (C > 1) arises when this condition fails. This often occurs when the
generator L has both dissipative and conservative (skew-adjoint) components, L = S+A.
If the kernel of the dissipative part S is larger than the kernel of the full generator L
(ker(S) ⊋ ker(L)), some modes are not directly damped. Convergence relies on the
skew-adjoint part A mixing these undamped modes into damped ones, leading to the
prefactor C > 1 [Vil09].

4.3. The Singular Value Gap

A useful quantity for analyzing convergence, particularly in relation to hypocoercivity,
is the singular value gap of the generator. It measures the minimum “action” of the
generator on states orthogonal to its kernel.

Definition 4.2 (Singular Value Gap). Let L be the generator of a contractive C0-
semigroup with kernel F . The singular value gap of L, denoted s(L), is defined
as:

s(L) := inf
{
∥LX∥H | X ∈ Dom(L) ∩ F⊥, ∥X∥H = 1

}
. (4.4)

Equivalently, s(L) is the smallest non-zero singular value of L, or the square root of the
smallest non-zero eigenvalue of the positive self-adjoint operator L∗L.

The singular value gap provides a bound on the achievable asymptotic decay rate,
especially relevant in hypocoercive scenarios where the exponential convergence rate ν
might be much smaller than s(L).
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Lemma 4.2 (Decay Rate Bound via Singular Value Gap). Let {Pt}t≥0 be a hypocoercive
semigroup satisfying (4.2) with optimal rate ν = λ(L) and prefactor C ≥ 1. Then the
decay rate is bounded by the singular value gap:

ν ≤ (1 + logC)s(L). (4.5)

Proof. This result relates the asymptotic decay rate ν to the instantaneous action s(L)
via the hypocoercivity constant C. A proof, adapted from [LL24, Lemma 2.5], is provided
in Appendix C.1.

This inequality is fundamental for our analysis. It implies that if we can compute or
bound the singular value gap s(L) of a generator and estimate its hypocoercivity constant
C, we obtain an upper bound on its exponential convergence rate ν, which determines the
relaxation time trel ≈ 1/ν. This connection will be crucial when comparing the original
and lifted dynamics.

5. Abstract Lifting Framework

This section establishes the theoretical framework for analyzing the convergence speed
of the full dynamics governed by L, viewing it as a specific type of “lift” of the rescaled
effective slow dynamics governed by LO. We adapt the structure presented in the [EL24a,
LL25], refining the definitions to precisely match our adiabatic elimination context and
incorporating the necessary modifications, such as the error term arising from the non-
skew-adjoint perturbation.

5.1. Base and Lifted Semigroups

We consider the base semigroup, {PO
t }t≥0 = {exp(tLO)}t≥0. This represents the

rescaled effective slow dynamics identified through adiabatic elimination. This semigroup
acts on the Hilbert space HS := ker(R), which is a closed subspace of the full operator
space H. The generator (LO,Dom(LO)) is approximated by the rescaled second-order
term from the SW expansion, LO = −PSVR+VPS . We assume these effective dynamics
converge towards a steady state, exhibiting hypocoercivity.

Assumption 5.1 (Hypocoercivity of Base Dynamics). The base semigroup {PO
t }t≥0 on

HS is hypocoercive. Specifically, there exist constants νO > 0 and CO ≥ 1 such that for
all X ∈ HS ∩ ker(LO)

⊥:

∥PO
t X∥H ≤ COe

−νOt∥X∥H. (5.1)

In addition, we have the lifted semigroup, {Pt}t≥0 = {exp(tL)}t≥0, which corres-
ponds to the full original dynamics. This semigroup acts on the larger Hilbert space
H, and its generator is the full generator L = γR + V. Our objective is to analyze the
convergence rate of {Pt} by exploiting its structural connection to {PO

t }.
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5.2. Ad Embed Structure

We now formalize the connection between the full generator L and the rescaled effective
generator LO using conditions derived directly from our adiabatic elimination analysis.
In this context, the perturbation V within L serves as the operator that couples the slow
and fast dynamics.

Definition 5.1 (Adiabatic Embedding Structure). Let L = γR+V be a generator on a
finite-dimensional Hilbert space H. We say that L exhibits an Adiabatic Embedding
(Ad Embed) Structure if it satisfies the following conditions:

1. Orthogonality Condition: The perturbation V maps the slow subspace HS =
ker(R) strictly into its orthogonal complement HF . Equivalently, for all X,Y ∈
Dom(V) ∩HS :

⟨X,VY ⟩H = 0. (5.2)

2. Approximate Quadratic Form: Let S be a positive bounded operator restric-
ted to HF . Let the coupling admit the decomposition V = Lham + ηLpert. Let
LO = −PSVSVPS be the effective generator, and QO = −PSLhamSLhamPS be the
unperturbed effective generator. We assume:
(a) Gap Existence: LO admits a non-trivial singular value gap s(LO) > 0.
(b) Kernel Consistency: dimker(LO) equals to dimker(QO), a common pre-

requisite for perturbative arguments.
Under these conditions, there exists a constant CAQF ≥ 0 such that for all X,Y ∈
Dom(V) ∩HS , the quadratic form satisfies the bound:

|⟨LX,SLY ⟩H − ⟨X, |LO|Y ⟩HS
| ≤ ηCAQF ∥X∥H∥Y ∥H, (5.3)

where |LO| =
√
L†
OLO.

3. Generator Decomposition: The components of L satisfy:
(a) The coupling V = Lham + ηLpert contains a dominant skew-adjoint part Lham

and a bounded perturbation Lpert.
(b) The dissipation γR is self-adjoint and annihilates the slow subspace (HS =

ker(R)). It is strictly coercive on the fast subspace HF ; that is, there exists
λR > 0 such that −R ≥ λRPF .

(c) The steady states coincide: ker(L) = ker(LO), and this subspace F is strictly
contained within the slow subspace, F ⊂ HS .

This definition precisely mirrors the structure derived in Sections 3.2 and 3.4. The Or-
thogonality condition stems from L(1) = 0. The Approximate Quadratic Form condition
is abstractly stated here but rigorously justified by Assumption 3.1 and Proposition 3.2,
establishing the crucial link between the action of L (filtered by S) and the magnitude
of LO, explicitly accounting for the η-dependent error via CAQF . The Generator Decom-
position clarifies the distinct roles of V and γR. This Ad Embed Structure forms the
foundation for applying lifting-based convergence bounds to the full system L.
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6. Convergence Bounds for the Lifted Semigroup

Having established the Ad Embed Structure connecting the full generator L to the res-
caled effective generator LO, we now derive bounds on the convergence rate of the full
(lifted) semigroup {Pt}. We leverage the relationships encapsulated in the Orthogonality
and Approximate Quadratic Form conditions.

6.1. Upper Bound on the Convergence Rate

The exponential convergence rate ν(L) governs the asymptotic decay. Lemma 4.2 con-
nects this rate to the singular value gap s(L) via the hypocoercivity constant C(L) as
ν(L) ≤ (1+logC(L))s(L). We obtain an upper bound on ν(L) by bounding s(L) in terms
of the effective generator LO and the lifting structure, utilizing the refined Approximate
Quadratic Form condition.

Theorem 6.1 (Upper Bound on ν(L)). Let {Pt}t≥0 be a hypocoercive C0-semigroup on
H with generator L = γR+V satisfying the Ad Embed Structure (Definition 5.1, using the
Approximate Quadratic Form Condition (5.3)) relative to the target effective generator
LO acting on HS = ker(R). Let the decay be characterized by r(t) = C(L) exp(−ν(L)t).
Let S be the positive definite operator from the Approximate Quadratic Form condition.
Define Π1 as the orthogonal projection onto the subspace Ran(V|HS

) ⊆ HF . Then, the
exponential convergence rate ν(L) is bounded by:

ν(L) ≤ (1 + logC(L))

√
s(LO) + ηCAQF

s(Π1SΠ1)
, (6.1)

where s(LO) is the singular value gap of the effective generator LO, s(Π1SΠ1) is the
smallest eigenvalue (singular value gap) of the positive definite operator Π1SΠ1 restric-
ted to the subspace Ran(Π1), and CAQF is the explicit constant from the Approximate
Quadratic Form condition.

Proof. The proof involves bounding the singular value gap s(L) by restricting the infimum
defining it to the subspace HS . The revised Approximate Quadratic Form condition (5.3)
is then used to relate the action of L back to the magnitude of LO, incorporating the
explicit error term bounded by ηCAQF . The detailed derivation is provided in Appendix
D.1.

This theorem shows that the convergence rate of the full (lifted) system is limited by
the singular value gap s(LO) of the effective dynamics and the “filtering factor” s(Π1SΠ1)
related to the operator S. The ηCAQF term indicates that the non-skew-adjoint part of
the perturbation V introduces a small, explicitly bounded correction to this upper limit.

Remark 6.1 (Optimality and the Perturbative Regime). Utilizing the rigorous scaling
CAQF = Θ(s(LO)

−1) derived in Proposition 3.2, the effective spectral parameter govern-
ing the upper bound behaves as

ν(L) ≲
√
s(LO) + ηCAQF ∼

√
s(LO) +O(ηs(LO)−1). (6.2)
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We recall that the stability of the effective generator requires the perturbation to satisfy
η ≤ ηcrit, where the critical threshold scales as ηcrit = Θ(s(LO)

2) to prevent the closure of
the spectral gap. Consequently, the condition η = O(s(LO)

2) is intrinsic to the validity of
the framework. In this regime, the perturbation term ηs(LO)

−1 becomes comparable to
the leading order gap s(LO), preserving the scaling behavior

√
Θ(s(LO)) = Θ(

√
s(LO)).

This square-root dependence represents a transition from the intrinsic diffusive relaxation
of the effective dynamics (τ ∼ s(LO)

−1) to a ballistic relaxation in the lifted space
(τ ∼ s(LO)

−1/2). This saturates the theoretical maximum acceleration for Markovian
lifts (often analogous to the Heisenberg limit in quantum metrology), confirming that
the non-equilibrium perturbation does not structurally obstruct optimal convergence
provided it respects the spectral stability bound.

6.2. Lower Bound of the Convergence Rate

To derive a lower bound on the mixing speed of the full semigroup {Pt} generated by
L, we adapt the variational framework based on Flow Poincaré inequalities [LL25, LL24,
EL24a]. This approach is particularly suited for handling hypocoercivity. Our goal is to
relate the convergence rate of L back to the properties of the effective slow dynamics LO.

6.2.1. Flow Poincaré Inequality Framework

We establish the functional setting for the Flow Poincaré inequality. Let L2([0, T ];H)
be the Bochner space of square-integrable paths Xt : [0, T ] → H, equipped with the
normalized inner product:

⟨Xt, Yt⟩T,H :=
1

T

∫ T

0
⟨Xt, Yt⟩Hdt. (6.3)

We also consider its closed subspace L2([0, T ];HS) of paths valued in the slow subspace
HS = ker(R).

For a closed, densely defined operator A on H, we define the associated sesquilinear
form, often representing a Dirichlet form if −A is dissipative and self-adjoint:

EA(X,Y ) := −⟨X,AY ⟩H, (6.4)

for X ∈ H and Y ∈ Dom(A). We denote the quadratic form by EA(X) := EA(X,X).
The corresponding time-averaged forms are:

ET,A(Xt, Yt) :=
1

T

∫ T

0
EA(Xt, Yt)dt, and ET,A(Xt) := ET,A(Xt, Xt). (6.5)

Crucial to the method is the Backward Kolmogorov Operator, which incorporates
the time derivative and the “non-dissipative” part of the dynamics. In our Ad Embed
structure L = γR+ V, the operator V acts as the coupling. We define (A,Dom(A)) on
L2([0, T ];H) as:

AXt := −∂tXt + VXt, (6.6)
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with domain:

Dom(A) :=
{
Xt ∈ H1([0, T ];H) | Xt ∈ Dom(V) for a.e. t, and VXt ∈ L2([0, T ];H)

}
,

(6.7)

where H1 is the standard Sobolev space of paths with square-integrable weak derivatives.
The following lemma connects the action of A in the full space H to the rescaled effect-

ive dynamics |LO| in the slow subspace HS , incorporating the Approximate Quadratic
Form condition. It shows how the structure involving V and S reduces to the magnitude
of the rescaled effective generator LO when projected appropriately.

Lemma 6.1 (Inner Product Reduction of A). Assume the Ad Embed Structure (Defini-
tion 5.1) holds, including the Approximate Quadratic Form Condition (5.3) with constant
CAQF . Then, for any sufficiently regular paths Xt, Yt, Zt taking values in the slow sub-
space HS = ker(R), the following relation holds:

⟨AXt, Zt + SVYt⟩T,H = −⟨∂tXt, Zt⟩T,HS
+ ET,−|LO|(Xt, Yt) +RT,η(X,Y ), (6.8)

where the remainder term satisfies |RT,η(X,Y )| ≤ ηCAQF
1
T

∫ T
0 ∥Xt∥H∥Yt∥Hdt.

Proof. The identity follows from expanding the inner product on the left-hand side, ap-
plying the Orthogonality condition of the Ad Embed Structure to eliminate cross-terms,
and using the revised Approximate Quadratic Form condition (5.3) to relate the term
⟨VXt, SVYt⟩ back to ⟨Xt, |LO|Yt⟩. The approximation introduces the explicit remainder
term RT,η(X,Y ). A full proof is provided in Appendix E.1.

Next, we require the existence of solutions to an abstract divergence equation involving
the magnitude of the effective operator |LO|. This technical result enables the construc-
tion of auxiliary functions required for the Flow Poincaré inequality.

Assumption 6.1 (Regularity of Effective Operator Magnitude). The operator |LO| =√
L∗
OLO acting on HS has the following properties:

1. Discrete spectrum: |LO| has a discrete spectrum consisting of non-negative ei-
genvalues.

2. Non-trivial singular gap: The smallest non-zero eigenvalue of |LO| (which is the
singular value gap s(LO)) is strictly positive, s(LO) > 0.

Define the subspace L2
⊥([0, T ];HS) of paths in L2([0, T ];HS) that are orthogonal to

the kernel ker(LO) at almost every time t.

L2
⊥([0, T ];HS) =

{
Xt ∈ L2([0, T ];HS) | PSXt = 0 for a.e. t ∈ [0, T ]

}
. (6.9)

Theorem 6.2 (Abstract Divergence Lemma). Under Assumption 6.1, for any T > 0
and any path Xt ∈ L2

⊥([0, T ];HS), there exists a pair of paths (Zt, Yt) with Zt, Yt valued
in Dom(|LO|) ⊂ HS solving the abstract divergence equation:

∂tZt + |LO|Yt = Xt, (6.10)
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and satisfying the energy estimates:

∥|LO|Yt∥T,HS
≤ c1(T )∥Xt∥T,HS

,
√

ET,−|LO|(Zt) ≤ c2(T )∥Xt∥T,HS
, (6.11)√

ET,−|LO|(Yt) ≤ c3(T )∥Xt∥T,HS
,
√
ET,−|LO|(∂tYt) ≤ c4(T )∥Xt∥T,HS

, (6.12)

where ET,−|LO|(Wt) = ⟨Wt, |LO|Wt⟩T,HS
. The constants scale as:

c1 = Θ(1), c2 = Θ(1), c3 = Θ

(
T +

1√
s(LO)

)
, c4 = Θ

(
1 +

1

T
√
s(LO)

)
.

(6.13)

Proof. The proof adapts the spectral method from [LL25, EGH+25], using the eigen-
basis of the self-adjoint operator |LO|. The proof structure relies solely on |LO| and is
independent of specific lifting details. A full proof is deferred to Appendix E.1.

Before stating the main Flow Poincaré inequality, we need additional regularity as-
sumptions tailored to the Ad Embed structure. These assumptions ensure that the
different operator terms behave well with respect to each other and the underlying dis-
sipation.

Assumption 6.2 (Regularity Conditions for the Flow Poincaré Inequality). Let the
generator L = γR+ V satisfy the Ad Embed Structure (Definition 5.1). Let LO be the
target effective generator satisfying Assumption 5.1, and let |LO| satisfy Assumption 6.1.
Let PS denote the orthogonal projection onto HS = ker(R) and S. We assume:

1. Existence of a Regular Path Space. There exists a subspace C0 ⊂ F⊥∩Dom(L)
dense in F⊥ (where F = ker(L)). Let C[0,T ] := {PtX0 | X0 ∈ F⊥, t ∈ [0, T ]} and
Cd
[0,T ] := {PtX0 | X0 ∈ C0, t ∈ [0, T ]}. We assume that:

(a) For any path Xt ∈ Cd
[0,T ], both Xt and its projection PSXt belong to the domain

required for Theorem 6.2 and the definition of A.

(b) Cd
[0,T ] is dense in C[0,T ] with respect to the norm ∥Xt∥T,H +

√
ET,−|LO|(PSXt).

2. Operator Regularity and Bounded Perturbation. The operators R, V and S
satisfy standard domain inclusions. We assume the non-skew-adjoint perturbation
V is bounded relative to the (unscaled) fast dissipation R. Specifically, there exists
a constant K1 > 0 such that for all X ∈ Dom(R) ∩Dom(V) with X ∈ HF :

∥S1/2VX∥H ≤ K1

√
ER(X), (6.14)

where ER(X) = −⟨X,RX⟩.

3. Bounded Intertwining Terms. The terms intertwining the coupling V and the
dissipation R (via S) are controlled by the effective dynamics. Specifically, there
exist constants K2,K3 > 0 such that for all Y ∈ Dom(LO):

∥(1− PS)V∗SVY ∥H ≤ K2∥|LO|Y ∥HS
+K3

√
E−|LO|(Y ). (6.15)
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These assumptions lead to crucial estimates bounding the coupling between different
parts of the generator.

Lemma 6.2 (Coupling Strength Estimates). Under Assumption 6.2, for sufficiently
regular paths Xt ∈ Dom(R) and Yt ∈ Dom(LO), the following bounds hold:

|⟨RXt, SVYt⟩H| ≤
√
ER(Xt)(E−|LO|(Yt) + ηCAQF ∥Yt∥2H), (6.16)

|⟨Xt − PSXt,VYt⟩H| ≤
√
ER(Xt)(E−|LO|(Yt) + ηCAQF ∥Yt∥2H), (6.17)

|⟨V(Xt − PSXt), SVYt⟩H| ≤ ∥Xt − PSXt∥H
(
K2∥|LO|Yt∥HS

+K3

√
E−|LO|(Yt)

)
.

(6.18)

Proof. These inequalities follow from applying the Cauchy-Schwarz inequality, the prop-
erties of S, the Approximate Quadratic Form condition, and the bounds defined in As-
sumption 6.2. A detailed derivation is in Appendix E.2.

With these tools and assumptions, we can now state the Flow Poincaré inequality
for our Ad Embed structure. This inequality provides a quantitative link between the
average norm of the state trajectory and the average dissipation rate associated with
the unscaled fast dynamics R. A crucial requirement for the following theorem is that
the non-conservative perturbation η be small relative to the intrinsic timescales of the
effective dynamics (specifically, ensuring 1− ηCcorr > 0 as defined below), justifying the
perturbative approach for well-behaved target systems.

Theorem 6.3 (Flow Poincaré Inequality for Ad Embed). Let CAQF be the explicit con-
stant from the Approximate Quadratic Form condition (Definition 5.1). Assume η is
sufficiently small such that 1 − ηCcorr > 0, where Ccorr = CAQF s(LO)

−1c1(T ) is a
structural correction constant. Under Assumption 6.2, for any T > 0 and initial state
X0 ∈ F⊥ ∩Dom(L), the trajectory Xt = PtX0 satisfies the strict Flow Poincaré inequal-
ity:

αT (η)∥Xt∥2T,H ≤ ET,R(Xt), (6.19)

with the rate constant

αT (η) =

[
(γÃ1(T, η) + Ã2(T, η))

2

(1− ηCcorr)2
+

1

λR

]−1

, (6.20)

where the η-corrected coefficients are

Ã1(T, η) = c3(T ) +
√
ηCAQF s(LO)

−1c1(T ), (6.21)

Ã2(T, η) = K1c2(T ) + λ
−1/2
R (∥S∥1/2c4(T ) +K2c1(T ) +K3c2(T ))

+
√
ηCAQFK1s(LO)

−1/2c2(T ). (6.22)

Here, ci(T ), i = 1, 2, 3, 4 are the constants from the Abstract Divergence Lemma (The-
orem 6.2).
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Proof. The proof adapts the variational argument from [LL25]. It involves decomposing
the trajectory norm, using the solution (Zt, Yt) to the abstract divergence equation to
handle the projected part PSXt, and applying the explicit coupling estimates (Lemma
6.2) derived from the Ad Embed structure. The η-dependent error terms from the Ap-
proximate Quadratic Form condition are rigorously tracked and absorbed into the coeffi-
cients Ãi(T, η) and Ccorr, resulting in a strict inequality without constant error tails. A
full, self-contained proof is provided in Appendix E.2.

Remark 6.2 (Spectral Stability and the Validity Regime). The condition 1−ηCcorr > 0
serves as a rigorous constraint on the perturbation strength relative to the intrinsic
timescale of the effective dynamics. Recall that the structural correction constant is
defined by Ccorr = CAQF s(LO)

−1c1(T ). Incorporating the rigorous scaling CAQF =
Θ(s(LO)

−1) in Proposition 3.2 and c1(T ) = Θ(1) in Theorem 6.2, the correction factor
scales asymptotically as Ccorr = Θ(s(LO)

−2). Consequently, the strict positivity of the
geometric decay rate αT (η) necessitates that the non-equilibrium perturbation satisfies
η = O(s(LO)

2), coinciding with that of Remark 6.1.

6.2.2. Lower Bound Estimation from Flow Poincaré Inequality

The Flow Poincaré inequality established in Theorem 6.3 links the time-averaged state
norm to the time-averaged dissipation. This inequality enables the derivation of an
explicit lower bound for the convergence rate via a standard Grönwall-type argument
applied to a time-averaged energy functional. The resulting bound quantifies the strict
exponential decay of this averaged energy.

Theorem 6.4 (T -Average Convergence Lower Bound). Let the generator L = γR + V
satisfy the assumptions of Theorem 6.3. Assume η is sufficiently small such that αT (η) >
0. For any observation period T > 0, provided the effective rate νeff defined below is
positive, any initial state X0 ∈ F⊥ ∩ Dom(L) exhibits time-averaged strict exponential
decay bounded by:

1

T

∫ t+T

t
∥PsX0∥2Hds ≤ e−2νefft∥X0∥2H, (6.23)

where the decay rate parameter νeff depends on γ, η, T as

νeff = νeff(γ, η, T ) := γαT (η)− η∥Lpert∥. (6.24)

Proof. The proof involves defining the time-averaged energy functional

ET (t) =
1

T

∫ t+T

t
∥PsX0∥2Hds.

By differentiating ET (t) with respect to time and utilizing the properties of the generator
L = γR + Lham + ηLpert, we relate d

dtET (t) to the dissipation term involving R and
the perturbation term involving Lpert. Applying the strict Flow Poincaré inequality
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(Theorem 6.3) to bound the dissipation term and using the operator norm to bound the
perturbation term leads to the differential inequality

d

dt
ET (t) ≤ −2νeffET (t).

Solving this inequality using Grönwall’s lemma and bounding the initial condition ET (0)
by ∥X0∥2H yields the stated bound. The detailed derivation is provided in Appendix
E.3.

This theorem provides an explicit lower bound on the time-averaged convergence rate,
νeff. The rate is primarily determined by the Flow Poincaré constant αT (η) scaled by γ,
reduced slightly by the contribution from the non-conservative perturbation Lpert scaled
by η.

The time-averaged decay described in Theorem 6.4 yields an explicit lower bound on
the convergence rate. This result can be refined to provide a pointwise exponential decay
bound for the trajectory ∥Xt∥H, along with an explicit expression for the near-optimal
fast dissipation scale γ that maximizes this lower bound for a fixed averaging time T .

Corollary 6.1 (Near-optimal Selection of γ). Assume η is sufficiently small such that
αT (η) > 0. Under the assumptions of Theorem 6.4, for any T > 0 and initial state
X0 ∈ F⊥ ∩Dom(L), the trajectory Xt = PtX0 satisfies the pointwise decay bound:

∥Xt∥H ≤ CT e
−νefft∥X0∥H, (6.25)

where the decay rate is νeff = γαT (η)− η∥Lpert∥ and the prefactor is CT = eνeffT .
Furthermore, for a fixed T , the lower bound on the decay rate νeff is maximized by

choosing γ near-optimally as

γopt(T ) =
1

Ã1(T, η)

√
Ã2(T, η)2 +

(1− ηCcorr)2

2λR
, (6.26)

where Ã1, Ã2, Ccorr are the η-dependent coefficients defined in Theorem 6.3. This choice
yields the corresponding maximal rate lower bound νopt(T ) explicitly derived in Appendix
E.1.

Proof. The hypocoercive-type estimate follows from the time-averaged bound (Theorem
6.4) using semigroup contractivity. The explicit expressions for γopt(T ) and νopt(T ) are
obtained by maximizing the rate expression νeff with respect to γ. The detailed derivation
is provided in Appendix E.1.

This corollary provides an explicit lower bound νopt(T ) on the exponential conver-
gence rate of the full generator L for a given T . It demonstrates how the interplay
between the fast dissipation scale γ, the properties of the effective dynamics LO, and the
non-conservative perturbation ηLpert determines the convergence speed. The final step
involves analyzing the scaling of νopt(T ) by optimizing over the time horizon T .
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Finally, by analyzing the dependence of the maximized rate νopt(T ) on the averaging
time T and the singular value gap s(LO) of the target effective generator, we determine
the conditions under which the lifting achieves significant acceleration, specifically the
“diffusive-to-ballistic” scaling characteristic of optimal lifts. This involves choosing T
optimally to balance contributions that scale differently with s(LO).

Corollary 6.2 (Optimal Rate Scaling and Quadratic Speedup). Let s := s(LO) denote
the singular value gap of the target effective generator. Under the assumptions of Theorem
6.3, suppose the structural constants satisfy the scaling conditions K1,K2, λR, ∥S∥ = Θ(1)
and K3 = Θ(

√
s). Assume further that the Approximate Quadratic Form constant scales

as CAQF = Θ(s−1) and that the non-conservative perturbation strength η satisfies the
strict asymptotic scaling condition:

η = o(s2) as s→ 0. (6.27)

Then, by choosing the observation time optimally as Topt = Θ(s−1/2), the maximal con-
vergence rate lower bound exhibits quadratic scaling:

νopt(Topt) = Θ(
√
s). (6.28)

Moreover, the prefactor CTopt = eνopt(Topt)Topt associated with the pointwise decay bound
remains asymptotically bounded, i.e., CTopt = Θ(1).

Proof. The proof relies on the asymptotic analysis of the rate expression νopt(T ) derived
in Corollary 6.1. Substituting the scalings of the energy estimate constants ci(T ) with
T = Θ(s−1/2) and K3 = Θ(

√
s), the dominant behavior of the lifting term is identified as

Θ(
√
s). Crucially, the condition η = o(s2) ensures that the spectral stability correction

term ηCcorr (which scales as Θ(ηs−2)) vanishes asymptotically, preserving the strict
positivity of the Flow Poincaré constant. Furthermore, this subdominance guarantees
that the perturbative decay rate reduction −η∥Lpert∥ remains negligible compared to the
lifting gain. Finally, the exponent νopt(Topt)Topt is shown to be Θ(1), ensuring a bounded
prefactor. The detailed rigorous calculation is provided in Appendix E.2.

Remark 6.3 (Physicality of Scales and Robustness). We conclude with two observations
regarding the physical consistency of the derived scaling laws.

First, the strict subdominance condition η = o(s(LO)
2) imposed in Corollary 6.2 is

formally stronger than the spectral stability threshold η = O(s(LO)
2) required for the

upper bound (Remark 6.1) and the existence of the Flow Poincaré constant (Remark 6.2).
While the stricter o(s2) condition is necessary to mathematically isolate the pure Θ(

√
s)

asymptotic behavior by suppressing higher-order corrections, the acceleration mechanism
itself is robust. The lifting speedup persists in the broader regime η = O(s(LO)

2),
provided the perturbation remains below the critical value ηcrit required to keep the
spectral gap open.

Second, the structural scaling assumptions employed in the proof are physically mo-
tivated. The conditions ∥S∥ = λ−1

R = Θ(1) and CAQF = Θ(s(LO)
−1) follow directly

from the separation of timescales (λR ≫ s(LO)) and the spectral geometry of the
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square root function near zero, as indicated in Proposition 3.2. The intertwining scaling
K3 = Θ(

√
s(LO)), which governs the coupling between the dissipative and slow sectors,

is not arbitrary; it coincides precisely with the optimal scaling identified for equilib-
rium lifts in [LL25, Eq. (2.42)], suggesting that the Ad Embed structure successfully
generalizes the geometry of optimal reversible lifts to the non-equilibrium setting.

7. Examples

To validate and illustrate the abstract Ad Embed framework, we now apply it to two ca-
nonical systems, demonstrating its broad applicability. We first analyze classical nonequi-
librium Langevin dynamics [MR22, IOS17], showing how the full underdamped system
naturally realizes the Ad Embed Structure as a lift of its overdamped, high-friction limit.
We then show how this same mathematical structure emerges in a boundary-driven open
quantum system [PEKP20, LPS22], where the full Lindbladian in the Zeno regime acts as
a quantum lift of an effective classical Markov process. For both examples, we rigorously
verify that the generators satisfy the key Orthogonality and Approximate Quadratic Form
conditions. We then present numerical experiments to test our main theoretical predic-
tions: the existence of an optimal, finite dissipation scale (γopt), and the characteristic
quadratic speedup, νopt = Θ(

√
s(LO)).

7.1. Example: Classical Nonequilibrium Langevin Dynamics

We now illustrate the Adiabatic Embedding (Ad Embed) Structure with a canonical
example from classical statistical mechanics: the nonequilibrium Langevin dynamics in
the high-friction limit [MR22, IOS17]. This system clearly exhibits the timescale separa-
tion required for adiabatic elimination, where the momentum variable equilibrates much
faster than the position variable.

7.1.1. Dynamics and Generators

Consider a particle with position q ∈ Rd and momentum p ∈ Rd evolving according to
the underdamped Langevin equations:

dqt = ptdt, (7.1)

dpt = (−∇qU(qt) + ηF (qt))dt− γptdt+

√
2γ

β
dWt, (7.2)

where U(q) is a potential, ηF (q) is a non-conservative force (0 ≤ η ≪ min(1, γ)), where
γ is the friction coefficient, β = 1/T is the inverse temperature, and Wt is a standard
d-dimensional Wiener process. The generator L for this process, acting on suitable test
functions f(q, p), is the adjoint of the associated Fokker-Planck operator:

Lf(q, p) = p · ∇qf + (−∇qU(q) + ηF (q)− γp) · ∇pf +
γ

β
∆pf. (7.3)
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In the high-friction limit γ → ∞, after appropriate time rescaling, the dynamics are ex-
pected to converge to the overdamped Langevin equation dQt = (−∇qU(Qt)+ηF (Qt))dt+√
2/βdW ′

t [MR22]. The generator for this limiting process acts on functions f(q) as:

LOf(q) = (−∇qU(q) + ηF (q)) · ∇qf +
1

β
∆qf. (7.4)

This LO represents the target effective generator whose structure we aim to recover via
adiabatic elimination.

7.1.2. Hilbert Space Structure and Decomposition

The natural Hilbert space for the full dynamics is H = L2(R2d, dµ̂), where µ̂ is the
invariant measure of the underdamped process (7.3). In the limit γ → ∞, this measure is
known to factorize as dµ̂(q, p) → dµ(q)gβ(p)dp in Wasserstein distance [MR22, Theorem
1.1], where µ is the invariant measure for the overdamped dynamics (L∗

Oµ = 0) and
gβ(p) = (β/2π)d/2e−β|p|2/2 is the Maxwell-Boltzmann distribution. We equip H with the
inner product ⟨f, g⟩H =

∫
f∗(q, p)g(q, p)dµ̂(q, p).

We decompose the full generator L according to the AE structure L = γR+ V:

γRf = −γp · ∇pf +
γ

β
∆pf, (7.5)

Vf = p · ∇qf + (−∇qU(q) + ηF (q)) · ∇pf. (7.6)

The operator R = −p · ∇p + 1
β∆p generates the Ornstein-Uhlenbeck process for the

momentum p, which thermalizes to the Maxwell-Boltzmann distribution gβ(p). Its kernel
consists precisely of functions independent of p. Therefore, the slow subspace is HS =
ker(R) = {f ∈ H | f(q, p) = f(q) a.e.}, which corresponds to L2(Rd, dµ) in the large γ
limit. The orthogonal projection PS : H → HS in this limit is given by averaging over
the momentum with the Maxwell-Boltzmann weight: PS [f ](q) =

∫
f(q, p)gβ(p)dp. It is

known that R is self-adjoint and negative semi-definite with respect to the inner product
weighted by gβ(p) (and consequently for dµ̂ in the large γ limit).

7.1.3. Verification of Ad Embed Conditions

We now explicitly verify the key structural conditions required by the AE framework,
namely the Orthogonality condition (PSVPS = 0) and the second-order formula for LO.

Proposition 7.1 (Conditions Verification for Langevin). The Langevin generator L =
γR+ V satisfies:

(i) PSVPS = 0.

(ii) LO = −PSVR+VPS, where LO is the overdamped generator (7.4).
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Proof. (i) Verification of Orthogonality: Let f ∈ H be an arbitrary function. Its projec-
tion onto the slow subspace is fq(q) = PS [f ](q), which is independent of p. We apply the
coupling operator V to fq:

Vfq(q) = p · ∇qfq(q) + (−∇qU(q) + ηF (q)) · ∇pfq(q)︸ ︷︷ ︸
=0

= p · ∇qfq(q). (7.7)

Now, we project this result back onto the slow subspace using PS :

PS [V(PSf)](q) =

∫
Rd

(p · ∇qfq(q))gβ(p)dp (7.8)

=

(∫
Rd

pgβ(p)dp

)
· ∇qfq(q). (7.9)

The integral
∫
pgβ(p)dp represents the mean momentum under the Maxwell-Boltzmann

distribution, which is zero as gβ(p) is centered. Consequently, PS [V(PSf)](q) = 0 for all
f , demonstrating that PSVPS = 0.

(ii) Verification of Second-Order Formula: We compute the expression −PSVR+VPS

acting on an arbitrary function fq(q) ∈ HS . First, as shown above, VPS [f ](q, p) =
Vfq(q) = p · ∇qfq(q). Let h(q, p) = p · ∇qfq(q). Next, we determine the action of the
pseudo-inverse R+. We need to find ψ = R+h, which is the unique solution in HF (i.e.,
PS [ψ] = 0) to the equation Rψ = h:

−p · ∇pψ +
1

β
∆pψ = p · ∇qfq(q). (7.10)

By inspection (or using standard results for the Ornstein-Uhlenbeck generator), the solu-
tion with mean zero is ψ(q, p) = −p · ∇qfq(q). Indeed, ∇pψ = −∇qfq(q) and ∆pψ = 0,
so Rψ = −p · (−∇qfq(q)) + 0 = p · ∇qfq(q) = h. Thus, R+(p · ∇qfq(q)) = −p · ∇qfq(q).
Now, we apply V to ψ:

Vψ = p · ∇qψ + (−∇qU + ηF ) · ∇pψ (7.11)
= p · ∇q(−p · ∇qfq(q)) + (−∇qU + ηF ) · ∇p(−p · ∇qfq(q)) (7.12)

= −(p⊗ p) : ∇2
qfq(q) + (−∇qU + ηF ) · (−∇qfq(q)). (7.13)

Finally, we apply the projection PS (momentum averaging with gβ(p)) and multiply by
−1:

−PS [VR+VPSf ] = −
∫ [

−(p⊗ p) : ∇2
qfq(q) + (∇qU − ηF ) · ∇qfq(q)

]
gβ(p)dp (7.14)

=

(∫
(p⊗ p)gβ(p)dp

)
: ∇2

qfq(q)−
(∫

gβ(p)dp

)
(∇qU − ηF ) · ∇qfq(q).

(7.15)
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Using the standard Gaussian integral results
∫
gβ(p)dp = 1 and

∫
(p ⊗ p)gβ(p)dp = 1

β1
(where 1 is the identity tensor), we obtain:

−PS [VR+VPSf ] =
1

β
1 : ∇2

qfq(q)− (∇qU − ηF ) · ∇qfq(q) (7.16)

=
1

β
∆qfq(q) + (−∇qU + ηF ) · ∇qfq(q). (7.17)

This expression precisely matches the generator LOfq(q) of the overdamped Langevin
dynamics given in (7.4).

Thus, we have rigorously verified both PSVPS = 0 and LO = −PSVR+VPS . This
confirms that the classical Langevin system provides a concrete realization of the abstract
Ad Embed structure.

7.1.4. Numerical Verification

To provide a concrete validation of our theoretical framework, particularly the prediction
of an optimal convergence rate and the ν = Θ(

√
s(LO)) scaling (Corollary 6.2), we per-

form a numerical experiment on the non-reversible Langevin dynamics. This experiment
is designed to test two central, non-trivial predictions of the Ad Embed structure: (i) the
existence of an optimal, finite dissipation scale γ that maximizes the convergence rate
ν(L), and (ii) a quantitative, super-linear scaling relationship between this accelerated
rate and the intrinsic rate s(LO) of the target effective system.

Numerical Estimate of Convergence Rate. A critical aspect of this numerical val-
idation is the accurate measurement of the exponential convergence rate ν(L). For a
non-reversible NESS, the generator L is non-self-adjoint. Consequently, its spectrum is
complex and the autocorrelation function (ACF) of an observable f is not a simple sum
of positive decaying exponentials. Instead, it exhibits oscillatory decay.

The dynamics of any observable f (projected onto the subspace orthogonal to the
steady state) can be decomposed in the eigenbasis of the generator L with invariant
measure π. For t large enough, the dynamics are dominated by the slowest-decaying
modes (i.e., the eigenvalues λj with the largest real part, Re(λj) = −ν). For a non-
reversible system, these eigenvalues may be complex, λslow = −ν ± iω. The ACF’s
asymptotic behavior is thus:

ρf (t) =
⟨f, etLf⟩π

∥f∥2π
≈ Ae−νt cos(ωt+ ϕ), t→ ∞

While ρf (t) itself oscillates, the asymptotic convergence rate ν governs the exponential
decay of its envelope. We can therefore extract ν by analyzing the logarithm of the
envelope’s magnitude:

log |ρf (t)| ≈ log |A| − νt

This establishes a linear relationship where the slope is precisely −ν. Our numerical
method implements this derivation: we compute the empirical ACF ρ̂f (t) from a long
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simulation, and then perform a linear fit on the slope of its log-envelope, log |ρ̂f (t)|, in
the asymptotic (linear) tail region to extract ν(L). For better clarity, we use the median
ratio on the control group LO, which gives it a perfect linear relationship in comparison
with L.

Numerical Setup. We model a particle on a two-dimensional torus T2 governed by a
tilted double-well potential U(x, y) = hb/4(x

2−1)2+ϵ/2x+1/2y2 and a non-conservative
rotational force F = α(−y, x)T . We fix the physical parameters to β = 1.0 (inverse
temperature), α = 0.5 (rotational strength, part of Lpert), and ϵ = 0.1 (potential tilt).
The potential’s barrier height, hb, is varied in the range [3.0, 5.0] to create a set of target
systems with progressively slower intrinsic dynamics.

The target effective dynamics are governed by the 2D overdamped generator LO (ana-
logous to Eq. (7.4)). The baseline convergence rate of this system is given by its singular
value gap, s(LO), which we compute by discretizing the operator on a 50× 50 grid and
finding its smallest non-zero singular value. The full underdamped Langevin dynamics
(generator L in Eq. (7.3)) serves as the Ad Embed system, where the particle’s mo-
mentum p = (px, py) is the auxiliary fast variable. The friction coefficient γ corresponds
to the fast dissipation scale in our L = γR+ V decomposition.

We simulate this full system using a BAOAB integrator [KK22]. The convergence
rate ν(L) is quantified by extracting the asymptotic slope from the log-envelope of the
ACF of the x-coordinate, as described in our methodology. For each barrier height hb
(i.e., for each s(LO)), we perform a scan over the friction coefficient γ in the range
[0.1, 100] to identify the optimal friction γopt that yields the maximal convergence rate,
νopt = ν(L(γopt)).

Results and Analysis. The results of our simulations are presented in Figure 1. The
non-equilibrium nature of the system is established by its steady-state distribution (Fig-
ure 1a), which exhibits persistent probability currents, confirming the absence of detailed
balance. This complex non-equilibrium steady state (NESS) is the target distribution
for our acceleration analysis.

A key prediction of the theory, encapsulated in Corollary 6.1, is that the acceleration
is an optimally tuned effect, not a monotonic limit. We verify this in Figure 1c for the
system with the highest barrier (hb = 5.0), where s(LO) is smallest. We plot the measured
convergence rate ν(L) as a function of the friction coefficient γ. The rate clearly displays
a sharp peak at an optimal friction γopt ≈ 34. This non-trivial result demonstrates that
maximal acceleration is achieved at a finite dissipation scale, a regime distinct from both
the overdamped (γ → ∞) and Hamiltonian (γ → 0) limits. An explicit comparison
of exponential convergence rates (Figure 1b) shows that the optimal lifted generator L
consistently mixes faster than the collapsed generator LO, providing a 1.23× speedup in
median.

The central quantitative test of our framework is the predicted scaling law, νopt ∝√
s(LO). In Figure 1d, we plot both the measured optimal lifted rate νopt (purple) and

the baseline collapsed rate ν(LO) (blue) against the singular gap s(LO) on a log-log
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Figure 1: Numerical Verification for Nonequilibrium Langevin. (a) The non-
equilibrium steady state (NESS) for a particle in a tilted double-well potential
(hb = 5.0) with a rotational force. Color map indicates probability density
(yellow is high), and white lines show probability currents. (b) Convergence
rate comparison between L (optimally lifted) and LO (collapsed). The lifted
dynamics are consistently faster, providing a 1.23× speedup in median. (c)
Measured convergence rate ν (from ACF log-envelope slope) as a function of
the friction coefficient γ for hb = 5.0. The rate peaks at an optimal value,
γopt ≈ 34, confirming a key theoretical prediction. (d) Log-log plot of conver-
gence rates versus the singular gap s(LO). The optimal lifted rate νopt (purple
circles) follows a power-law with slope mL ≈ 0.54, indicating a significant spee-
dup towards the theoretical quadratic prediction (m = 1/2, dotted line). In
contrast, the baseline collapsed rate ν(LO) (green squares) scales linearly with
slope mLO

≈ 1.00 (green dashed line), confirming the perfectly diffusive nature
of the unlifted dynamics.

scale. We tune the baseline rate s(LO) over the range [0.112, 0.157]. The baseline rates
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follow a linear relationship ν(LO) ∝ s(LO)
mLO with a fitted exponent mLO

≈ 1.00 (green
dashed line), perfectly consistent with standard diffusive dynamics. In stark contrast,
the optimally lifted rates follow a power-law νopt ∝ s(LO)

mL with a significantly smaller
exponent mL ≈ 0.54 (black dashed line). This result, while slightly deviating from the
ideal asymptotic 1/2 (likely due to finite η effects), strongly validates our framework
by rigorously demonstrating a “diffusive-to-near-ballistic” speedup in a non-equilibrium
setting.

In conclusion, this experiment provides compelling numerical evidence for the Ad Em-
bed principle within a classical non-equilibrium system. By coupling the slow dynamics
to an auxiliary dissipative channel—specifically, the momentum—we establish a dynam-
ical structure with an optimizable convergence rate. This optimized system effectively
circumvents the intrinsic kinetic bottlenecks of the original effective dynamics, offering a
novel paradigm for controlling and accelerating convergence in complex non-equilibrium
systems.

7.2. Example: Dissipative Zeno-Limit Spin Chain

We now instantiate the Adiabatic Embedding (Ad Embed) Structure with a canonical
example from open quantum systems: a boundary-driven quantum spin chain operating
in the Zeno regime [PEKP20]. This system is a direct quantum analogue of the classical
Langevin case. A strong, fast dissipative process (γR) acts on a small part of the system
(the boundaries), forcing the dynamics into a “Zeno” slow subspace. The “slow” coherent
Hamiltonian evolution (V), which contains both a main part and a non-conservative per-
turbation, acts as the coupling that, in the second order, gives rise to the non-equilibrium
effective dynamics LO.

7.2.1. Dynamics and Generators

We consider a quantum spin chain of length N defined on the system Hilbert space
Hsys = (C2)⊗N . The dynamics of an observable X ∈ B(Hsys) are governed by a Lindblad
master equation in the Heisenberg picture. The generator L admits a decomposition
based on a separation of timescales:

L = γR+ V, (7.18)

where γ ≫ 1 is a dimensionless parameter quantifying the strength of the dissipation.
The “fast” generator R describes the interaction with boundary reservoirs, driving the

system rapidly toward a specific boundary configuration. It is defined as the sum of two
local dissipators:

R(X) =
∑

k∈{1,N}

(
L†
kXLk −

1

2
{L†

kLk, X}
)
. (7.19)

The jump operators are chosen as L1 = σ−1 and LN = σ+N , corresponding to the strong
polarization of the first site to the state | ↓⟩ and the N -th site to | ↑⟩. The kernel of
this operator defines the slow subspace HS := ker(R). In this setup, HS is isomorphic
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to the algebra of observables on the inner N − 2 spins, embedded in the full space as
X = |↓⟩⟨↓ |1 ⊗ X̃ ⊗ |↑⟩⟨↑ |N .

The “slow” dynamics are generated by the coupling term V(X) = i[H,X], which de-
scribes coherent evolution. To model a non-equilibrium scenario, we consider a Hamilto-
nian of the form H = H0 + ηH1, where η is a perturbative parameter satisfying η ≪ 1.

(i) H0 represents a reversible interaction, such as the standard XXZ coupling:

H0 =
N−1∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1 +∆σzjσ

z
j+1

)
.

(ii) ηH1 introduces a non-conservative perturbation, such as a Dzyaloshinskii-Moriya
(DM) interaction [FCTY23] or a symmetry-breaking boundary field [LPS22], which
renders the effective dynamics non-reversible.

This structure induces a decomposition of the coupling term V = Lham + ηLpert, with
Lham(X) = i[H0, X] and Lpert(X) = i[H1, X].

In the limit γ → ∞, adiabatic elimination yields an effective generator acting on HS .
Due to the specific parity symmetries of H0 and the boundary states, the first-order
contribution vanishes, i.e., PSVPS = 0, where PS is the orthogonal projection onto HS .
Consequently, the dominant slow dynamics are governed by the second-order effective
generator LO:

LO = −PSVR+VPS , (7.20)

where R+ denotes the Moore-Penrose pseudoinverse of R restricted to the fast subspace
H⊥

S . Restricted to the diagonal subalgebra spanned by the effective basis states {|α⟩}
of the inner chain, LO acts as a classical Markov generator. Its action on a diagonal
observable f =

∑
α fα|α⟩⟨α| ∈ HS is given by

(LOf)α =
∑
β ̸=α

wβα(fβ − fα), (7.21)

where wβα denotes the transition rate from state |α⟩ to |β⟩. The expansion wβα =

w
(0)
βα+ηw

(1)
βα+O(η2) explicitly captures the non-equilibrium nature of the target dynamics.

7.2.2. Hilbert Space Structure and Decomposition

We analyze the dynamics in the Liouville space of operators H = B(Hsys), equipped with
the Hilbert-Schmidt inner product ⟨A,B⟩ = Tr(A†B). The generator is decomposed as
L = γR+ V, where the dissipative part γR and the coupling V are given by:

γR(X) = γ
(
D†[σ−1 ](X) +D†[σ+N ](X)

)
, (7.22)

V(X) = i[H0, X] + i[ηH1, X]. (7.23)

To satisfy the structural assumptions of the Adiabatic Embedding framework (Defin-
ition 5.1), we identify the slow subspace HS with the kernel of the fast dissipation R.
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Physically, this corresponds to the “Zeno subspace” of operators invariant under the
boundary dissipation:

HS := ker(R) =
{
X ∈ B(Hsys)

∣∣∣ X = PbdXPbd

}
, (7.24)

where Pbd = |↓⟩⟨↓ |1⊗Ibulk⊗|↑⟩⟨↑ |N is the projection onto the steady state of the bound-
ary spins. The orthogonal projection PS : H → HS acts as the conditional expectation
onto this subalgebra.

The fast subspace is defined as the orthogonal complement HF := H⊥
S . Since R consists

of local dissipators with unique steady states on the boundaries, it is strictly coercive on
HF ; that is, there exists λR > 0 such that −Re⟨X,RX⟩ ≥ λR∥X∥2H for all X ∈ HF .

The effective dynamics on HS are determined by the perturbative action of V. We
observe that for the specific interaction HamiltonianH (e.g., XX coupling), the first-order
term vanishes:

PSVPS = 0. (7.25)

This follows because the Hamiltonian terms (e.g., σx1σx2 ) map states from the boundary-
polarized Zeno subspace to states with excitations on the boundaries, which lie entirely
in HF . Consequently, the effective generator is given by the second-order limit LO =
−PSVR+VPS .

While HS generally contains both populations and coherences of the inner spins, the
secular approximation (valid when the energy splitting in the effective Hamiltonian is
large compared to the linewidth) allows us to decouple the diagonal elements. Restricting
LO to the diagonal subalgebra yields the classical Markov generator described in Eq.
(7.21), with transition rates wβα derived rigorously via the trace formula on HS .

7.2.3. Verification of Ad Embed Conditions

We now verify that the spin chain generator L = γR+V satisfies the structural require-
ments of the Adiabatic Embedding framework.

Proposition 7.2 (Verification of Structural Conditions). Let HS = ker(R) be the slow
subspace defined above. The generator satisfies:

(i) Orthogonality: PSVPS = 0.

(ii) Effective Generator: The restriction of the second-order effective operator LO =
−PSVR+VPS to the diagonal subalgebra corresponds to the classical rate generator
defined in Eq. (7.21).

Proof. (i) Verification of Orthogonality. We show that V maps the slow subspace HS

entirely into the fast subspace HF . Let X ∈ HS . By the characterization of the kernel,
X takes the form X = Pbd ⊗ X̃, where Pbd is the boundary steady-state projector. The
action of the coupling term is given by V(X) = i[H,X]. The Hamiltonian H = H0+ηH1

contains terms such as σx1σx2 (from the XX interaction) that couple the boundary spins
to the bulk. Such operators flip the state of the boundary spins; for instance, σx1 maps
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the ground state |↓⟩1 to the excited state |↑⟩1. Consequently, the operator [H,X] has no
support on the boundary steady state configuration; formally, Pbd[H,X]Pbd = 0. Since
the projection PS acts as the conditional expectation onto the boundary steady states,
we have

PSVPSX = PS(i[H,X]) = 0. (7.26)

Thus, PSVPS = 0.
(ii) Derivation of the Effective Generator. We compute the matrix elements of the

effective generator LO = −PSVR+VPS in the basis of the slow subspace. We focus on
the diagonal subalgebra spanned by the projections Xα = |α⟩⟨α| corresponding to the
computational basis states of the inner spins. The transition rate from state |α⟩ to |β⟩
is given by the matrix element Fβα of the generator. Using the Hilbert-Schmidt inner
product ⟨A,B⟩ = Tr(A†B), we have:

Fβα = Tr(XβLO(Xα)) = −Tr
(
XβVR+V(Xα)

)
. (7.27)

Substituting the decomposition V(·) = i[H0 + ηH1, ·] and expanding to first order in η,
we obtain:

Fβα = w
(0)
βα + ηw

(1)
βα +O(η2). (7.28)

The zeroth-order term corresponds to the reversible dynamics:

w
(0)
βα = −Tr

(
Xβi[H0,R+(i[H0, Xα])]

)
. (7.29)

Due to the Hermiticity of H0 and the preservation of detailed balance by the boundary
dissipators in the absence of the perturbation, this term is symmetric, i.e., w(0)

βα = w
(0)
αβ .

The first-order correction arises from the cross terms:

w
(1)
βα = −Tr

(
Xβ

(
i[H0,R+(i[H1, Xα])] + i[H1,R+(i[H0, Xα])]

))
. (7.30)

The interaction H1 (e.g., Dzyaloshinskii-Moriya) breaks the parity symmetry of the
Hamiltonian. Consequently, w(1)

βα ̸= w
(1)
αβ , introducing non-reciprocity into the transition

rates.
Finally, the action of LO on an observable f =

∑
α fαXα is recovered by linearity:

LO(f) =
∑
α

fα
∑
β

FβαXβ =
∑
β

Xβ

(∑
α

Fβαfα

)
. (7.31)

Probability conservation implies
∑

β Fβα = 0 (trace preservation of the pre-dual). This
enforces the diagonal constraint Fαα = −

∑
β ̸=α Fβα. Denoting the off-diagonal rates by

wβα := Fβα for β ̸= α, we obtain the standard Master equation form:

(LOf)β =
∑
α ̸=β

wβαfα −

∑
γ ̸=β

wγβ

 fβ =
∑
α ̸=β

wβα(fα − fβ). (7.32)

This matches Eq. (7.21), confirming that the effective dynamics correspond to a classical
Markov chain with non-equilibrium rates induced by ηH1.
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7.2.4. Numerical Verification

To provide a concrete validation of our theoretical framework, particularly the predic-
tion of an optimal convergence rate and the ν = Θ(

√
s(LO)) scaling (Corollary 6.2), we

perform a numerical experiment on the non-reversible Zeno-limit spin chain. This exper-
iment is designed to test two central, non-trivial predictions of the Ad Embed structure:
(i) the existence of an optimal, finite dissipation scale γ that maximizes the conver-
gence rate ν(L), and (ii) a quantitative, super-linear scaling relationship between this
accelerated rate and the intrinsic rate s(LO) of the target effective system.

Numerical Estimate of Convergence Rate. A critical aspect of this numerical val-
idation is the accurate measurement of the asymptotic convergence rate ν(L). For a
non-reversible NESS, the generator L is non-self-adjoint. Consequently, its spectrum is
complex, and the autocorrelation function (ACF) of an observable f is not a simple sum
of positive decaying exponentials. Instead, it exhibits oscillatory decay.

The dynamics of any observable f (projected onto the subspace orthogonal to the
steady state) can be decomposed in the eigenbasis of the generator L with invariant
measure π. For t large enough, the dynamics are dominated by the slowest-decaying
modes (i.e., the eigenvalues λj with the largest real part, Re(λj) = −ν). For a non-
reversible system, these eigenvalues may be complex, λslow = −ν ± iω. The ACF’s
asymptotic behavior is thus:

ρf (t) =
⟨f, etLf⟩π

∥f∥2π
≈ Ae−νt cos(ωt+ ϕ), t→ ∞

While ρf (t) itself oscillates, the asymptotic convergence rate ν governs the exponential
decay of its envelope. We can therefore extract ν by analyzing the logarithm of the
envelope’s magnitude:

log |ρf (t)| ≈ log |A| − νt

This establishes a linear relationship where the slope is precisely −ν. Our numerical
method implements this derivation: we compute the empirical ACF ρ̂f (t) from a long
Quantum Jump Monte Carlo (QJMC) trajectory, and then perform a linear fit on the
slope of its log-envelope, log |ρ̂f (t)|, in the asymptotic (linear) tail region to extract
ν(L). For better clarity, we use the median ratio on the control group LO, which gives
it a perfect linear relationship in comparison with L.

Numerical Setup. We model a 3-spin chain (N = 3) governed by the Lindbladian in
Eq. (7.18). The Hamiltonian is H = JH0+DH1, where H0 =

∑
j=1,2(σ

x
j σ

x
j+1+σ

y
j σ

y
j+1)

is the XX coupling and H1 = σy1σ
z
2 −σz2σ

y
1 is a non-conservative DM-like interaction. We

fix the non-conservative strength D = 0.5 (our η) and vary the main coupling strength, J ,
in the range [0.2, 1.2] to create a set of target systems with progressively slower intrinsic
dynamics.

The target effective dynamics are governed by the 2-state classical generator LO (Eq.
(7.21)) acting on the M = N − 2 = 1 inner spin. We compute this singular gap of
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LO by first numerically constructing the full 64× 64 superoperator LO = −PSVR+VPS

using the matrix pseudoinverse, and then extracting the 2 × 2 classical rate matrix F
and computing its smallest non-zero singular value.

The full 3-spin Lindblad dynamics (generator L in Eq. (7.18)) serves as the Ad Embed
system. The states of the boundary spins (sites 1 and 3) serve as the auxiliary fast
variables. The dissipation strength γ corresponds to the fast dissipation scale γ in our
L = γR+ V decomposition.

We simulate this full system using a Quantum Jump Monte Carlo (QJMC) traject-
ory [LGM+26]. The convergence rate ν(L) is quantified by extracting the asymptotic
slope from the log-envelope of the ACF of the “slow” observable O = σz2 (the magnetiz-
ation of the inner spin), as described in our methodology. For a direct comparison, the
convergence rate of the collapsed system, ν(LO), is also computed via the same ACF
log-envelope method, but applied to a separate QJMC simulation of the 2 × 2 classical
dynamics. For each coupling J (i.e., for each s(LO)), we perform a scan over the dissip-
ation γ in the range [10−1.5, 102.0] to identify the optimal dissipation γopt that yields the
maximal convergence rate, νopt = ν(L(γopt)).

Results and Analysis. The results of our simulations are presented in Figure 2. The
non-equilibrium nature of the system is established by its steady-state density matrix
for the inner spin (Figure 2a), which exhibits non-zero coherences. Furthermore, we
compute a non-zero classical probability current within the slow subspace, obtaining ≈
−7.8× 10−13, confirming the absence of detailed balance. This complex non-equilibrium
steady state (NESS) is the target distribution for our acceleration analysis.

A key prediction of the theory, encapsulated in Corollary 6.1, is that the acceleration
is an optimally tuned effect, not a monotonic limit. We verify this in Figure 2c for
the system with J = 1.2. We plot the measured convergence rate ν(L) (via ACF log-
envelope slope) as a function of the dissipation strength γ. The rate clearly displays a
sharp peak at an optimal dissipation γopt ≈ 1.4. This non-trivial result demonstrates
that maximal acceleration is achieved at a finite dissipation scale, a regime distinct from
both the slow (γ → ∞) and fast (γ → 0) coherent limits. An explicit comparison of the
practical convergence rates between L and LO is provided in Figure 2b, indicating that L
consistently mixes faster than LO, providing a ≈ 1.40× speedup in median (max 2.30×).

The central quantitative test of our framework is the predicted scaling law, νopt ∝√
s(LO). In Figure 2d, we plot both the measured optimal lifted rate νopt (purple)

and the baseline collapsed rate ν(LO) (blue) against the singular gap s(LO) for each
coupling J on a log-log scale. We tune the baseline singular gap s(LO) over the range
[≈ 9.5 × 10−12,≈ 3.2 × 10−11]. The baseline rates follow a linear relationship ν(LO) ∝
s(LO)

mLO with a fitted exponent mLO
≈ 1.00 (green dashed line), perfectly consistent

with standard diffusive dynamics. In contrast, the optimally lifted rates follow a power-
law νopt ∝ s(LO)

mL with a significantly smaller exponent mL ≈ 0.43 (black dashed
line). This result is in strong agreement with the ideal asymptotic prediction of mL =
1/2 (dotted line), rigorously confirming the “diffusive-to-ballistic” speedup in a complex
quantum setting.
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Figure 2: Numerical Verification for Nonequilibrium Spin Chain. (a) The non-
equilibrium steady state (NESS) of the inner spin (N = 2) for a system with
J ≈ 0.9 (matching γopt ≈ 11.99 from the label). The non-zero off-diagonal
elements and the non-zero classical current (≈ −7.8× 10−13) confirm the non-
equilibrium nature. (b) Convergence rate comparison (ν vs. ν) between L and
LO. The lifted dynamics are consistently faster, providing a ≈ 1.40× speedup in
median (max 2.30×). (c) Measured convergence rate ν (from ACF log-envelope
slope) as a function of the dissipation strength γ for J = 1.2. The rate peaks
at an optimal value, γopt ≈ 1.4, confirming a key theoretical prediction. (d)
Log-log plot of convergence rates versus the singular gap s(LO). The optimal
lifted rate νopt (purple circles) follows a power-law with slope mL ≈ 0.43 (black
dashed line), indicating a significant speedup towards the theoretical quadratic
prediction (m = 1/2, dotted line). In contrast, the baseline collapsed rate
ν(LO) (green squares) scales linearly with slope mLO

≈ 1.00 (green dashed
line), confirming the diffusive nature of the unlifted dynamics.

In conclusion, this experiment provides compelling numerical evidence for the Ad Em-
bed principle in a quantum, non-equilibrium system. By coupling the slow (inner) spin
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dynamics to an auxiliary dissipative channel (the boundary spins), we create a dynamical
structure whose convergence rate can be optimized. This optimal system circumvents the
intrinsic kinetic bottlenecks of the original effective dynamics, offering a new paradigm for
controlling and accelerating convergence in complex quantum systems out of equilibrium.

8. Conclusion

In this work, we have established a rigorous connection between the physical theory of
adiabatic elimination (AE) and the mathematical theory of lifting for accelerating Markov
processes, extending the framework in [EL24a, LL25] to non-equilibrium systems. We
show that the full generator L = γR + V of a system with timescale separation can
be formally analyzed as a lift of the effective slow dynamics LO. We show that this
“inverse AE” perspective provides a systematic framework for analyzing convergence to
Non-Equilibrium Steady States (NESS), a domain where traditional lifting techniques for
equilibrium processes do not apply.

The theoretical core of our approach is the “Adiabatic Embedding (Ad Embed) Struc-
ture” (Definition 5.1). This structure, built upon the Orthogonality and Approximate
Quadratic Form conditions derived from AE, rigorously incorporates the non-conservative,
non-equilibrium-inducing perturbation (via ηLpert) as an explicitly bounded error term
proportional to η. By adapting the variational framework of Flow Poincaré inequalities
[BLW25, LL25] to this novel structure, we derived explicit lower bounds on the conver-
gence rate of the full (lifted) generator L. Our main theoretical result, Corollary 6.2,
demonstrates that under the asymptotic regime where the non-equilibrium perturbation
is subdominant to the slow dynamics gap (η ≪ s(LO)

2), this non-equilibrium lift achieves
the optimal “diffusive-to-ballistic” quadratic speedup, νopt = Θ(

√
s(LO)), a characteristic

acceleration previously established only for reversible systems. This was validated by two
canonical, non-equilibrium examples—classical Langevin dynamics in Section 7.1 and a
quantum Zeno-limit spin chain in Section 7.2—where we confirmed both the existence of
an optimal, finite dissipation scale γopt and the predicted quadratic speedup.

Limitations. Despite these advances, our framework has notable limitations that define
clear avenues for future research. The current analysis is fundamentally perturbative;
it requires the non-equilibrium perturbation η to be small relative to the intrinsic slow
timescales to guarantee the strict positivity of the Flow Poincaré constant. How to
extend this hypocoercive analysis to strongly non-equilibrium systems, where the non-
conservative part is not small, remains a significant open challenge. Furthermore, our
“inverse AE” approach is analytical rather than constructive. It provides a powerful tool
for analyzing the convergence of a given full physical system L, but it does not yet offer
a general, constructive algorithm to design an optimal lift L for an arbitrary, pre-defined
slow NESS generator LO.

Future Works. Looking forward, this work opens several promising research directions.
A natural extension is to explore the possibility of iterative lifting. One can envision
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applying this lifting principle recursively—identifying new fast degrees of freedom to “lift
a lift”—potentially creating a hierarchy of generators that forms a scalable algorithm for
achieving arbitrarily fast dynamics. Addressing the limitations of the current work, a
primary goal will be to develop non-perturbative bounds for strongly non-equilibrium
lifts, perhaps by integrating techniques from linear response theory [BKAS17, ABFJ16],
dilation theory [HJLZ23, LLY+25], Floquet engineering [PYW+20] and projector frame-
work [GB24], or developing new variational principles. Finally, a significant theoretical
challenge is to invert the paradigm: to find a general constructive method for NESS
lifting, and to identify the precise physical properties of the coupling V and dissipator R
that guarantee the structural scaling assumptions (e.g., K3 = Θ(

√
s(LO))) required for

optimal acceleration. In bridging reservoir engineering [Nas25, Sel24, JBP25] with hypo-
coercivity [Vil09, LL24, FLT25], this framework offers a new paradigm for the analysis
and, ultimately, the design of rapid, non-equilibrium quantum processes.
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A. Proof for Preliminary

Lemma A.1 (Criterion for Strict Hypocoercivity, cf. Lemma 2.3). For an ergodic QMS,
the fixed-point space is a subspace of the dissipative kernel, F(L) ⊂ ker(S). The semi-
group is strictly hypocoercive if and only if this inclusion is strict:

dimker(S) > dimF(L). (A.1)

Proof. When X ∈ F(L), we have L(X) = 0, thus:

⟨X,S(X)⟩σ,1/2 = Re⟨X,L(X)⟩σ,1/2 = 0. (A.2)

From Pt is ergodic, from Lemma 2.1, we know S must be negative, combined with (A.2),
we have S(X) = 0, namely X ∈ ker(S). Thus, F(L) ⊂ ker(S).

When Pt is ergodic with invariant measure σ, we have (2.3) holds with C ≥ 1. It
suffices to show dimker(S) = dimF(L) is equivalent to C = 1.

Assuming Pt is coercive, we take time derivative and apply Grönwall’s inequality to
the following inequality:

∥Pt(X)− EF (X)∥2,σ ≤ e−2νt∥X − EF (X)∥2,σ, (A.3)

which indicates that when C = 1 we have

ν∥X − EF (X)∥22,σ ≤ −⟨X,S(X)⟩σ,1/2. (A.4)

Apparently, (A.4) implies ker(S) ⊂ F(L), and hence dimker(S) = dimF(L) follows.
On the other hand, assuming dimker(S) = dimF(L), since H is finite dimensional, we

have ker(S) = F(L). Thus, EF coincides with Eker(S), and F(L)⊥ = ker(S)⊥. Moreover,
from the S ≤ 0, there exists ν > 0 such that: ν∥X − Eker(S)(X)∥22,σ ≤ −⟨X,S(X)⟩σ,1/2,
for all X ∈ ker(S)⊥. Thus, for all X ∈ F(L)⊥, we also have:

ν∥X − EF (X)∥22,σ ≤ −⟨X,S(X)⟩σ,1/2. (A.5)

Note that (A.4) holds trivially on F(L), combined with equivalence established above,
we deduce C = 1.

B. Proofs for Adiabatic Elimination

Theorem B.1 (SW Effective Generator Formula, cf. Theorem 3.1). The block-diagonal
transformed generator L is given by:

L = Ldiag + tanh(Ŝ/2)Loffdiag, (B.1)

where L = Ldiag+Loffdiag is the decomposition of the full generator, and Ŝ is the adjoint-
action superoperator Ŝ(A) = [S, A]. The effective generator for the slow subspace is
Leff = PSLPS.

47



Proof. We define the similarity transformation via the adjoint action Ŝ(A) = [S, A]. The
transformed generator is L = eŜ(L). We decompose the superoperator eŜ into its even
and odd parts, eŜ = cosh(Ŝ) + sinh(Ŝ).

The generator S is purely block-off-diagonal (Sdiag = 0). The adjoint action Ŝ thus
maps block-diagonal operators to block-off-diagonal ones, and vice-versa. Consequently,
cosh(Ŝ) (containing only even powers of Ŝ) maps diagonal-to-diagonal (diag → diag)
and off-diagonal-to-off-diagonal (offdiag → offdiag), while sinh(Ŝ) (containing only odd
powers) maps diag → offdiag and offdiag → diag.

We apply this to the full generator L = (cosh(Ŝ)+sinh(Ŝ))(Ldiag+Loffdiag). Separating
the resulting block-diagonal and block-off-diagonal parts gives:

Ldiag = cosh(Ŝ)Ldiag + sinh(Ŝ)Loffdiag (B.2)

Loffdiag = sinh(Ŝ)Ldiag + cosh(Ŝ)Loffdiag (B.3)

The SW formalism requires that S be chosen to satisfy the decoupling condition
Loffdiag = 0. From (B.3), this gives the fundamental identity:

sinh(Ŝ)Ldiag = − cosh(Ŝ)Loffdiag. (B.4)

We now derive the final form of Ldiag. We start from (B.2) and add and subtract Ldiag:

Ldiag = Ldiag + (cosh(Ŝ)− 1)Ldiag + sinh(Ŝ)Loffdiag. (B.5)

We use the identity (B.4) to replace Ldiag:

Ldiag = Ldiag + (cosh(Ŝ)− 1)
(
− sinh(Ŝ)−1 cosh(Ŝ)Loffdiag

)
+ sinh(Ŝ)Loffdiag. (B.6)

Factoring out Loffdiag gives:

Ldiag = Ldiag +

(
−(cosh(Ŝ)− 1) cosh(Ŝ) + sinh2(Ŝ)

sinh(Ŝ)

)
Loffdiag. (B.7)

We simplify the numerator:

− cosh2(Ŝ) + cosh(Ŝ) + sinh2(Ŝ) = cosh(Ŝ)− (cosh2(Ŝ)− sinh2(Ŝ)) = cosh(Ŝ)− 1.
(B.8)

Substituting this back, we find:

Ldiag = Ldiag +

(
cosh(Ŝ)− 1

sinh(Ŝ)

)
Loffdiag. (B.9)

Finally, using the hyperbolic identity tanh(x/2) = cosh(x)−1
sinh(x) , we arrive at the exact

expression:

Ldiag = Ldiag + tanh(Ŝ/2)Loffdiag, (B.10)

which is the result stated in [Kes12].
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Theorem B.2 (SW Perturbative Expansion, cf. Theorem 3.2). . The effective generator
Leff = PSLPS has the perturbative expansion Leff =

∑∞
n=0 ϵ

nLeff
n . The first three non-

trivial orders are given by:

Leff
1 = PSVPS ≡ VS (B.11)

Leff
2 = −PSVPFR+PFVPS ≡ −V−R+V+ (B.12)

Leff
3 = V−R+VFR+V+ − 1

2

{
VS ,V−(R+)2V+

}
+

(B.13)

where R+ ≡ (PFRPF )
−1 is the inverse of R on the fast subspace HF , and we use the

compact notation V− = PSVPF , V+ = PFVPS, VS = PSVPS, and VF = PFVPF .

Proof. We derive the expansion using a 2 × 2 block matrix representation for oper-
ators on the decomposed space H = HS ⊕ HF . An operator A is written as A =(
PSAPS PSAPF

PFAPS PFAPF

)
.

The setup is L = R + ϵV. Since HS = ker(R), the unperturbed operator R is block-
diagonal. Let RF := PFRPF . The perturbation V has all four blocks.

R =

(
0 0
0 RF

)
, V =

(
VS V−

V+ VF

)
. (B.14)

The full generator is L =

(
ϵVS ϵV−

ϵV+ RF + ϵVF

)
. This gives the block-diagonal and block-

off-diagonal parts:

Ldiag =

(
ϵVS 0
0 RF + ϵVF

)
, Loffdiag =

(
0 ϵV−

ϵV+ 0

)
. (B.15)

The generator S is expanded as S =
∑∞

n=1 ϵ
nSn, where each Sn is purely block-off-

diagonal:

Sn =

(
0 S−

n

S+
n 0

)
. (B.16)

Step 1: Determine S1. We expand the decoupling condition sinh(Ŝ)Ldiag+cosh(Ŝ)Loffdiag =
0. We use sinh(Ŝ) = ϵŜ1 + O(ϵ3), cosh(Ŝ) = 1 + O(ϵ2), Ldiag = R + O(ϵ), and
Loffdiag = ϵVoffdiag. Matching terms of order O(ϵ) yields:

(ϵŜ1)(R) + (1)(ϵVoffdiag) = 0 =⇒ [S1,R] = −Voffdiag. (B.17)

We solve this commutator equation in block matrix form:(
0 S−

1

S+
1 0

)(
0 0
0 RF

)
−
(
0 0
0 RF

)(
0 S−

1

S+
1 0

)
= −

(
0 V−

V+ 0

)
(B.18)(

0 S−
1 RF

0 0

)
−
(

0 0
RFS+

1 0

)
=

(
0 −V−

−V+ 0

)
(B.19)(

0 S−
1 RF

−RFS+
1 0

)
=

(
0 −V−

−V+ 0

)
. (B.20)

Equating the blocks and using the invertibility of RF on HF (with inverse R+):
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1. (1,2) block: S−
1 RF = −V− =⇒ S−

1 = −V−R+.

2. (2,1) block: −RFS+
1 = −V+ =⇒ S+

1 = R+V+.

Step 2: Determine Leff
n . The transformed generator is Ldiag = Ldiag+tanh(Ŝ/2)Loffdiag.

The effective generator Leff =
∑
ϵnLeff

n is the PSL
diagPS block (the (1,1) block) of Ldiag.

We expand Ldiag =
∑
ϵnL(n) in powers of ϵ:

Ldiag = (R+ ϵVdiag) +

(
1

2
Ŝ +O(Ŝ3)

)
Loffdiag. (B.21)

Substituting Ŝ = ϵŜ1 +O(ϵ2) and Loffdiag = ϵVoffdiag:

Ldiag = (R+ ϵVdiag) +
( ϵ
2
Ŝ1 +O(ϵ3)

)
(ϵVoffdiag) (B.22)

We collect terms by order:

1. O(ϵ0): L(0) = R =

(
0 0
0 RF

)
. =⇒ Leff

0 = PSL
(0)PS = 0.

2. O(ϵ1): ϵL(1) = ϵVdiag = ϵ

(
VS 0
0 VF

)
. =⇒ Leff

1 = PSL
(1)PS = VS .

3. O(ϵ2): ϵ2L(2) = ϵ
2 Ŝ1(ϵVoffdiag) = ϵ2

2 [S1,Voffdiag].

We compute the O(ϵ2) term L(2) = 1
2 [S1,Voffdiag] using block matrices:

[S1,Voffdiag] =

(
0 S−

1

S+
1 0

)(
0 V−

V+ 0

)
−
(

0 V−

V+ 0

)(
0 S−

1

S+
1 0

)
(B.23)

=

(
S−
1 V+ 0
0 S+

1 V−

)
−
(
V−S+

1 0
0 V+S−

1

)
(B.24)

=

(
S−
1 V+ − V−S+

1 0
0 S+

1 V− − V+S−
1

)
. (B.25)

The effective generator Leff
2 is the (1,1) block of L(2) = 1

2 [S1,Voffdiag]:

Leff
2 =

1

2

(
S−
1 V+ − V−S+

1

)
. (B.26)

Finally, we substitute the expressions for S−
1 and S+

1 from Step 1:

Leff
2 =

1

2

(
(−V−R+)V+ − V−(R+V+)

)
(B.27)

=
1

2

(
−V−R+V+ − V−R+V+

)
(B.28)

= −V−R+V+. (B.29)

This rigorously derives the first- and second-order terms. The third-order term Leff
3

follows from this same procedure by matching terms at O(ϵ3), which involves finding S2

and including theO(Ŝ3) term from tanh(Ŝ/2). The full derivation is found in [Kes12].
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Theorem B.3 (Effective Generator via Adiabatic Elimination, cf. Theorem 3.3). Let
L = γR + V be a generator, where γ ≫ 1, R is self-adjoint with ker(R) ̸= {0}, and
PS is the orthogonal projection onto the slow subspace HS := ker(R). Let R+ be the
pseudo-inverse of R on the fast subspace HF = HF . The effective generator Leff acting
on HS is given by the expansion:

Leff = L(1) +
1

γ
L(2) +O(1/γ2), (B.30)

where the first- and second-order terms are:

L(1) = PSVPS (B.31)

L(2) = −PSVR+VPS . (B.32)

Proof. The derivation proceeds by first rescaling the generator to cast the problem into
the standard perturbation form required by the SW formalism, then applying the estab-
lished SW expansion formulas, and finally reversing the rescaling to obtain the generator
for the original timescale.

We begin by defining the small parameter ϵ = 1/γ and the rescaled generator L′ =
1
γL = R + ϵV. This allows us to identify the components needed for the SW expansion
(Theorem 3.2). The projection onto the slow subspace ker(R) is PS , and the projection
onto the fast subspace is PF = 1− PS .

The SW formalism provides the perturbative expansion for the effective generator
L′

eff = PSL
′PS of the rescaled system, where L′ = eSL′e−S . According to Theorem 3.2,

the expansion is L′
eff = Leff

0 + ϵLeff
1 + ϵ2Leff

2 + O(ϵ3). We compute the first few terms
explicitly.

The zeroth-order term is Leff
0 = PSRPS . Since PS projects onto the kernel of R, this

term vanishes: Leff
0 = 0.

The first-order term is Leff
1 = PSVPS from Theorem 3.2.

The second-order term, from Theorem 3.2, is Leff
2 = −PSVPFR+PFVPS . Since R+ ≡

(PFRPF )
−1 is the pseudo-inverse on the fast subspace, it maps HF → HF , implying

R+ = PFR+PF . Thus, the expression simplifies to Leff
2 = −PSVR+VPS .

Combining these terms yields the expansion for the rescaled effective generator:

L′
eff = 0 + ϵ(PSVPS) + ϵ2(−PSVR+VPS) +O(ϵ3). (B.33)

To find the effective generator Leff for the original timescale t, we reverse the rescaling
by multiplying L′

eff by γ = 1/ϵ:

Leff = γL′
eff =

1

ϵ

[
ϵ(PSVPS) + ϵ2(−PSVR+VPS) +O(ϵ3)

]
(B.34)

= (1)(PSVPS) + ϵ(−PSVR+VPS) +O(ϵ2) (B.35)

= PSVPS +
1

γ
(−PSVR+VPS) +O(1/γ2). (B.36)

This result precisely identifies the first-order term L(1) = PSVPS and the second-order
term L(2) = −PSVR+VPS , matching Theorem 3.3.
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Lemma B.1 (Iterative Dyson Expansion). Let L′ = A + B be a generator and P ′
t =

exp(tL′). The semigroup satisfies the identity:

P ′
t = exp(tA)

(
1+

∫ t

0
dt1 exp(−t1A)BP ′

t1

)
. (B.37)

Proof. We use the ansatz P ′
t = exp(tA)U(t) for some superoperator U(t). Taking the

time derivative, we have:

d

dt
P ′
t = L′P ′

t = (A+ B) exp(tA)U(t). (B.38)

Using the product rule on the ansatz, we also have:

d

dt
P ′
t = A exp(tA)U(t) + exp(tA)

d

dt
U(t). (B.39)

Equating the two expressions for the derivative yields:

(A+ B) exp(tA)U(t) = A exp(tA)U(t) + exp(tA)
d

dt
U(t) (B.40)

B exp(tA)U(t) = exp(tA)
d

dt
U(t) (B.41)

=⇒ d

dt
U(t) = exp(−tA)BP ′

t. (B.42)

We integrate this differential equation from 0 to t, using the initial condition U(0) = 1
(since P ′

0 = 1):

U(t) = 1+

∫ t

0
dt1 exp(−t1A)BP ′

t1 . (B.43)

Substituting this expression for U(t) back into the ansatz P ′
t = exp(tA)U(t) gives the

desired result.

Lemma B.2 (Grönwall’s Inequality for Volterra’s Equations). Let f(t) be a non-negative,
locally integrable function on [0,∞) satisfying the integral inequality:

f(t) ≤ A+ C

∫ t

0
e−λ(t−s)f(s)ds (B.44)

for constants A ≥ 0, C ≥ 0, and λ > 0. If C < λ, then f(t) is uniformly bounded for all
t ≥ 0 by:

f(t) ≤ Aλ

λ− C
. (B.45)

Proof. Let g(t) = eλtf(t). Multiplying the inequality by eλt, we obtain

g(t) ≤ Aeλt + C

∫ t

0
eλsf(s)ds = Aeλt + C

∫ t

0
g(s)ds. (B.46)
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Let G(t) =
∫ t
0 g(s)ds. Then G′(t) = g(t), and the inequality is G′(t) ≤ Aeλt + CG(t).

This is a first-order linear differential inequality G′(t)− CG(t) ≤ Aeλt. We multiply by
the integrating factor e−Ct:

d

dt
(G(t)e−Ct) ≤ Ae(λ−C)t. (B.47)

Integrating from 0 to t, and using G(0) = 0, we find (assuming λ ̸= C):

G(t)e−Ct ≤
∫ t

0
Ae(λ−C)sds =

A

λ− C
(e(λ−C)t − 1). (B.48)

Thus, G(t) ≤ A
λ−C (e

λt − eCt). Substituting this back into the inequality for g(t):

g(t) ≤ Aeλt + CG(t) ≤ Aeλt +
AC

λ− C
(eλt − eCt) =

Aλ

λ− C
eλt − AC

λ− C
eCt. (B.49)

Finally, we recover f(t) = g(t)e−λt:

f(t) ≤ Aλ

λ− C
− AC

λ− C
e(C−λ)t. (B.50)

Since C < λ by hypothesis, the exponent (C − λ) is strictly negative. The second term
is thus non-positive and decays to zero, which gives the uniform bound f(t) ≤ Aλ

λ−C .

Theorem B.4 (Approximation Error of AE Dynamics, cf. Theorem 3.4). Let Pt =
exp(tL) be the QMS with generator L = γR+ V, where R is self-adjoint with a spectral
gap λR > 0 on the fast subspace HF := ker(R)⊥. Assume L(1) = PSVPS = 0 and
that γ is sufficiently large such that γλR > ∥V∥. Let X(0) ∈ HS, X(t) = PtX(0), and
Xeff(t) = exp(tL̂eff)X(0) where L̂eff = 1

γL
(2). Then for any t ≥ 0, the approximation

error is bounded with respect to the KMS norm by:

∥X(t)−Xeff(t)∥2,σ ≤
C ′
V

γλR

(
1 + t

(
∥V∥+ ∥V∥2

C ′
V

))
∥X(0)∥2,σ, (B.51)

where C ′
V = ∥V∥

1−∥V∥/(γλR) is a constant of order O(∥V∥).

Proof. We decompose the error X(t)−Xeff(t) into its orthogonal components in the slow
subspace HS and the fast subspace HF :

X(t)−Xeff(t) = PFPtX(0)︸ ︷︷ ︸
XF (t)

+(PSPt − exp(tL̂eff))X(0)︸ ︷︷ ︸
Z(t)

. (B.52)

By the Pythagorean theorem, ∥X(t)−Xeff(t)∥22,σ = ∥XF (t)∥22,σ+∥Z(t)∥22,σ. We can bound
the total error by the sum of the norms: ∥X(t) −Xeff(t)∥2,σ ≤ ∥XF (t)∥2,σ + ∥Z(t)∥2,σ.
We now bound each term:
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1. Bound on Leakage XF (t): We analyze the rescaled dynamics t′ = γt, L′ = R+ ϵV
with ϵ = 1/γ. Let P ′

t′ = Pt′/γ . The leakage is XF (t
′) = PFP ′

t′X(0). Using the iterative
Dyson expansion (Lemma B.1) with A = R and B = ϵV, and X(0) ∈ ker(R) = HS :

XF (t
′) = PF

∫ t′

0
dt1e

(t′−t1)R(ϵV)P ′
t1X(0). (B.53)

Let XS(t1) = PSP ′
t1X(0) and XF (t1) = PFP ′

t1X(0). The assumption PSVPS = 0 implies
PFVPS = VPS .

XF (t
′) = ϵPF

∫ t′

0
dt1e

(t′−t1)RV(XS(t1) +XF (t1)) (B.54)

= ϵ

∫ t′

0
dt1e

(t′−t1)RVXS(t1) + ϵ

∫ t′

0
dt1e

(t′−t1)RPFVXF (t1). (B.55)

Let f(t′) = ∥XF (t
′)∥2,σ. We take the norm of the inequality, using ∥esRPF ∥ ≤ e−sλR

and the contractivity ∥XS(t1)∥2,σ ≤ ∥X(0)∥2,σ:

f(t′) ≤ ϵ

∫ t′

0
e−(t′−t1)λR∥V∥∥XS(t1)∥2,σdt1 + ϵ

∫ t′

0
e−(t′−t1)λR∥V∥f(t1)dt1 (B.56)

≤

(
ϵ∥V∥∥X(0)∥2,σ

∫ t′

0
e−(t′−s)λRds

)
+ ϵ∥V∥

∫ t′

0
e−(t′−t1)λRf(t1)dt1. (B.57)

Bounding the integral
∫ t′

0 e−uλRdu ≤
∫∞
0 e−uλRdu = 1/λR, we obtain:

f(t′) ≤
(
ϵ
∥V∥
λR

∥X(0)∥2,σ
)
+ ϵ∥V∥

∫ t′

0
e−(t′−t1)λRf(t1)dt1. (B.58)

This is precisely the form of Lemma B.2 with A = ϵ∥V∥λR
∥X(0)∥2,σ, C = ϵ∥V∥, and λ = λR.

The condition C < λ is ϵ∥V∥ < λR, or γλR > ∥V∥, which is assumed. Applying Lemma
B.2 yields the uniform-in-time bound:

f(t′) ≤ AλR
λR − C

=
(ϵ∥V∥∥X(0)∥2,σ/λR) · λR

λR − ϵ∥V∥
=

ϵ∥V∥
λR − ϵ∥V∥

∥X(0)∥2,σ. (B.59)

Substituting back ϵ = 1/γ and t′ = γt, we have for all t ≥ 0:

∥XF (t)∥2,σ ≤ ∥V∥/γ
λR − ∥V∥/γ

∥X(0)∥2,σ =
∥V∥

γλR − ∥V∥
∥X(0)∥2,σ. (B.60)

2. Bound on Intrinsic Error Z(t): Let XS(t) = PSPtX(0). The derivative of the slow
component is d

dtXS(t) = PSLPtX(0) = PS(γR+V)(XS(t)+XF (t)). Since PSR = 0 and
PSVPS = 0, this simplifies to d

dtXS(t) = PSVXF (t). The error Z(t) = XS(t) − Xeff(t)

satisfies d
dtZ(t) = (PSVXF (t))− (L̂effXeff(t)).

d

dt
Z(t) = L̂effZ(t) +

(
PSVXF (t)− L̂effXS(t)

)
. (B.61)
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Let E(t) = PSVXF (t)−L̂effXS(t). By Duhamel’s principle [Eva10], Z(t) =
∫ t
0 e

(t−s)L̂effE(s)ds.
Since L̂eff generates a contractive semigroup, ∥e(t−s)L̂eff∥ ≤ 1, and we have

∥Z(t)∥2,σ ≤
∫ t

0
∥E(s)∥2,σds ≤

∫ t

0

(
∥PSV∥∥XF (s)∥2,σ + ∥L̂eff∥∥XS(s)∥2,σ

)
ds. (B.62)

We use the bound ∥L(2)∥ = ∥PSVR+VPS∥ ≤ ∥V∥∥R+∥∥V∥ ≤ ∥V∥2/λR. Thus, ∥L̂eff∥ =
1
γ ∥L

(2)∥ ≤ ∥V∥2
γλR

. Using contractivity ∥XS(s)∥2,σ ≤ ∥X(0)∥2,σ and the bound (B.60):

∥E(s)∥2,σ ≤ ∥V∥
(

∥V∥
γλR − ∥V∥

∥X(0)∥2,σ
)
+

(
∥V∥2

γλR

)
∥X(0)∥2,σ (B.63)

=

(
∥V∥2

γλR − ∥V∥
+

∥V∥2

γλR

)
∥X(0)∥2,σ. (B.64)

This bound is uniform in s. Integrating from 0 to t:

∥Z(t)∥2,σ ≤ t ·
(

∥V∥2

γλR − ∥V∥
+

∥V∥2

γλR

)
∥X(0)∥2,σ. (B.65)

3. Total Error Bound: We define the constant C ′
V = ∥V∥

1−∥V∥/(γλR) , which is O(∥V∥).
Combine (B.60) and (B.65) directly:

∥X(t)−Xeff(t)∥2,σ ≤ ∥XF (t)∥2,σ + ∥Z(t)∥2,σ (B.66)

≤
[

∥V∥
γλR − ∥V∥

+ t

(
∥V∥2

γλR − ∥V∥
+

∥V∥2

γλR

)]
∥X(0)∥2,σ (B.67)

=

[
C ′
V

γλR
+ t

(
∥V∥C ′

V
γλR

+
∥V∥2

γλR

)]
∥X(0)∥2,σ (B.68)

=
C ′
V

γλR

[
1 + t

(
∥V∥+ ∥V∥2

C ′
V

)]
∥X(0)∥2,σ. (B.69)

This provides a rigorous bound that is O(1/γ) at t = 0 and grows only linearly in t.

C. Proof for Abstract framework

Lemma C.1 (Decay Rate Bound via Singular Value Gap, cf. Lemma 4.2). Let {Pt}t≥0

be a hypocoercive semigroup satisfying (4.2) with optimal rate ν = λ(L) and prefactor
C ≥ 1. Then the decay rate is bounded by the singular value gap:

ν ≤ (1 + logC)s(L). (C.1)

Proof. Note that the exponential decay

∥Ptx− P∞x∥H ≤ Ce−νt ∥x− P∞x∥H (C.2)

55



is equivalent (for some ν > 0 and T = (logC)/ν with C ≥ 1) to

∥Ptx− P∞x∥H ≤ e−ν(t−T ) ∥x− P∞x∥H for all t ≥ 0. (C.3)

Fix T, ν > 0 as in (C.3) and let x ∈ F⊥ (so P∞x = 0). Then∫ ∞

0
∥Ptx∥H dt =

∫ T

0
∥Ptx∥H dt+

∫ ∞

T
∥Ptx∥H dt ≤

∫ T

0
∥x∥H dt+

∫ ∞

T
e−ν(t−T )∥x∥H dt.

(C.4)

Evaluating the integrals gives∫ ∞

0
∥Ptx∥H dt ≤

(
T + 1

ν

)
∥x∥H. (C.5)

Hence the operator defined by

x 7→
∫ ∞

0
Ptx dt, x ∈ F⊥, (C.6)

is well-defined and bounded on F⊥. It follows that 0 belongs to the resolvent set of
the generator of the restricted contraction semigroup Pt : F⊥ → F⊥, so the inverse
(−L|F⊥)−1 is a bounded operator on F⊥. Moreover,

∥(−L|F⊥)−1x∥H ≤
∫ ∞

0
∥Ptx∥H dt ≤

(
T + 1

ν

)
∥x∥H. (C.7)

Using T = (logC)/ν from above and (C.3) (or the equivalent estimate for C), we obtain
the spectral bound estimate

1

s(L)
= sup

y∈Dom(L|F⊥ )\{0}

∥y∥H
∥L|F⊥y∥H

= sup
x∈F⊥\{0}

∥(−L|F⊥)−1x∥H
∥x∥H

≤ 1

ν
(1 + logC), (C.8)

as desired.

D. Proof for Upper bound

Theorem D.1 (Upper Bound on ν(L), cf. Theorem 6.1). Under the assumptions stated
in Theorem 6.1, the exponential convergence rate ν(L) satisfies:

ν(L) ≤ (1 + logC(L))

√
s(LO) + ηCAQF

s(Π1SΠ1)
, (D.1)

where CAQF is the constant from the Approximate Quadratic Form Condition.
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Proof. From Lemma 4.2, we know that the exponential convergence rate ν(L) is bounded
by ν(L) ≤ (1 + logC(L))s(L), where s(L) is the singular value gap of the full generator
L. Our goal is to derive an upper bound for s(L).

The singular value gap is defined as s(L) = inf{∥LX∥H | X ∈ Dom(L)∩F⊥, ∥X∥H =
1}, where F = ker(L) = ker(LO). Since the target effective generator LO acts on HS and
ker(LO) ⊂ HS , the subspace Dom(LO)∩F⊥∩HS is a subset of Dom(L)∩F⊥ (assuming
Dom(LO) ⊂ Dom(V)). Restricting the infimum to this smaller subspace provides an
upper bound for s(L):

s(L) ≤ inf{∥LX∥H | X ∈ Dom(LO) ∩ F⊥, ∥X∥H = 1}. (D.2)

Note that for X ∈ HS , we have LX = (γR+ V)X = VX. So, ∥LX∥ = ∥VX∥.
Let Y = LX = VX. By the Orthogonality condition, Y ∈ HF . Let Π1 be the

orthogonal projection onto Ran(V|HS
) ⊆ HF . Since Y belongs to this range space,

Π1Y = Y . Let S̄ = Π1SΠ1. The operator S is strictly positive definite and bounded on
HF . When restricted to the subspace Ran(Π1), S̄ remains strictly positive definite. Let
s(S̄) > 0 be its smallest eigenvalue (singular value gap) on this subspace.

We relate ∥Y ∥H to the quadratic form involving S:

⟨Y, SY ⟩H = ⟨Π1Y, SΠ1Y ⟩H = ⟨Y, S̄Y ⟩H. (D.3)

Since S̄ is positive definite on Ran(Π1), we have ⟨Y, S̄Y ⟩H ≥ s(S̄)∥Y ∥2H. Therefore,

∥Y ∥2H ≤ s(S̄)−1⟨Y, S̄Y ⟩H = s(S̄)−1⟨Y, SY ⟩H. (D.4)

Taking the square root and substituting Y = LX:

∥LX∥H ≤ s(S̄)−1/2⟨LX,SLX⟩1/2H . (D.5)

Now we apply the explicit Approximate Quadratic Form condition (5.3): ⟨LX,SLX⟩H ≤
⟨X, |LO|X⟩HS

+ ηCAQF ∥X∥2H for X ∈ HS . Substituting this into (D.5) for X with
∥X∥H = 1:

∥LX∥H ≤ s(S̄)−1/2 (⟨X, |LO|X⟩HS
+ ηCAQF )

1/2 . (D.6)

We insert this bound back into the inequality for s(L) from (D.2):

s(L) ≤ inf
{
s(S̄)−1/2 (⟨X, |LO|X⟩HS

+ ηCAQF )
1/2 | X ∈ Dom(LO) ∩ F⊥, ∥X∥H = 1

}
(D.7)

≤ s(S̄)−1/2
(
inf
{
⟨X, |LO|X⟩HS

| X ∈ Dom(LO) ∩ F⊥, ∥X∥H = 1
}
+ ηCAQF

)1/2
.

(D.8)

The operator |LO| is positive semi-definite and self-adjoint. The infimum of the Rayleigh
quotient ⟨X, |LO|X⟩/∥X∥2H over the subspace F⊥ = ker(LO)

⊥ is the smallest non-zero
eigenvalue of |LO|, which is exactly the singular value gap s(LO). Therefore,

s(L) ≤

√
s(LO) + ηCAQF

s(Π1SΠ1)
. (D.9)
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Finally, using the relationship ν(L) ≤ (1 + logC(L))s(L), we obtain the desired upper
bound:

ν(L) ≤ (1 + logC(L))

√
s(LO) + ηCAQF

s(Π1SΠ1)
. (D.10)

E. Proof for Lower bound

Lemma E.1 (Inner Product Reduction of A, cf. Lemma 6.1). Assume the Ad Embed
Structure (Definition 5.1) holds, including the Approximate Quadratic Form Condition
(5.3) with constant CAQF . Then, for any sufficiently regular paths Xt, Yt, Zt taking values
in the slow subspace HS = ker(R), the following relation holds:

⟨AXt, Zt + SVYt⟩T,H = −⟨∂tXt, Zt⟩T,HS
+ ET,−|LO|(Xt, Yt) +RT,η(X,Y ), (E.1)

where the remainder term satisfies |RT,η(X,Y )| ≤ ηCAQF
1
T

∫ T
0 ∥Xt∥H∥Yt∥Hdt.

Proof. The proof involves a direct calculation starting from the left-hand side (LHS). We
substitute the definition of the operator AXt = −∂tXt + VXt:

LHS = ⟨−∂tXt + VXt, Zt + SVYt⟩T,H (E.2)

=
1

T

∫ T

0
⟨−∂tXt + VXt, Zt + SVYt⟩Hdt. (E.3)

We expand the inner product inside the integral into four terms:

LHS =
1

T

∫ T

0

(
−⟨∂tXt, Zt⟩H︸ ︷︷ ︸

(i)

−⟨∂tXt, SVYt⟩H︸ ︷︷ ︸
(ii)

+ ⟨VXt, Zt⟩H︸ ︷︷ ︸
(iii)

+ ⟨VXt, SVYt⟩H︸ ︷︷ ︸
(iv)

)
dt.

(E.4)

We analyze each term individually:
Term (i): Yields −⟨∂tXt, Zt⟩T,HS

, as Xt, Zt ∈ HS .
Term (ii): Vanishes because ∂tXt ∈ HS and SVYt ∈ HF (using Orthogonality).
Term (iii): Vanishes because VXt ∈ HF (using Orthogonality) and Zt ∈ HS .
Term (iv): This term involves the quadratic form. For Xt, Yt ∈ HS , we have LXt =

VXt and LYt = VYt. Thus, ⟨VXt, SVYt⟩H = ⟨LXt, SLYt⟩H. We now apply the ex-
plicit Approximate Quadratic Form Condition (5.3): Define the error term for a fixed
t as E(Xt, Yt) = ⟨LXt, SLYt⟩H − ⟨Xt, |LO|Yt⟩HS

. The condition states |E(Xt, Yt)| ≤
ηCAQF ∥Xt∥H∥Yt∥H. So, ⟨VXt, SVYt⟩H = ⟨Xt, |LO|Yt⟩HS

+ E(Xt, Yt). By definition,
E−|LO|(Xt, Yt) = −⟨Xt, (−|LO|)Yt⟩HS

= ⟨Xt, |LO|Yt⟩HS
. Integrating term (iv) over time

gives:

1

T

∫ T

0
⟨VXt, SVYt⟩Hdt =

1

T

∫ T

0

(
E−|LO|(Xt, Yt) + E(Xt, Yt)

)
dt (E.5)

= ET,−|LO|(Xt, Yt) +
1

T

∫ T

0
E(Xt, Yt)dt. (E.6)
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Let RT,η(X,Y ) = 1
T

∫ T
0 E(Xt, Yt)dt. Then:

|RT,η(X,Y )| =
∣∣∣∣ 1T
∫ T

0
E(Xt, Yt)dt

∣∣∣∣ ≤ 1

T

∫ T

0
|E(Xt, Yt)|dt ≤ ηCAQF

1

T

∫ T

0
∥Xt∥H∥Yt∥Hdt.

(E.7)

Combining the results for the four terms, we find:

LHS = −⟨∂tXt, Zt⟩T,HS
+ 0 + 0 + (ET,−|LO|(Xt, Yt) +RT,η(X,Y )). (E.8)

This yields the desired identity with the explicitly bounded error term.

Theorem E.1 (Abstract Divergence Lemma, cf. Theorem 6.2). Under Assumption 6.1,
for any T > 0 and any path Xt ∈ L2

⊥([0, T ];HS), there exists a pair of paths (Zt, Yt) with
Zt, Yt valued in Dom(|LO|) ⊂ HS solving the abstract divergence equation:

∂tZt + |LO|Yt = Xt, (E.9)

and satisfying the energy estimates:

∥|LO|Yt∥T,HS
≤ c1(T )∥Xt∥T,HS

,
√
ET,−|LO|(Zt) ≤ c2(T )∥Xt∥T,HS

, (E.10)√
ET,−|LO|(Yt) ≤ c3(T )∥Xt∥T,HS

,
√

ET,−|LO|(∂tYt) ≤ c4(T )∥Xt∥T,HS
, (E.11)

where ET,−|LO|(Wt) = ⟨Wt, |LO|Wt⟩T,HS
. The constants scale as:

c1 = Θ(1), c2 = Θ(1), c3 = Θ

(
T +

1√
s(LO)

)
, c4 = Θ

(
1 +

1

T
√
s(LO)

)
.

(E.12)

Proof. The entire proof mirrors the version in [LL25, Lemma 3.12]. We include the proof
here for self-containedness and to make sure the component extraction on LO does not
inherently affect the conclusion.

By Assumption 6.1 and 5.1, we know −|LO| is a semi-negative-definite operator with
discrete spectrum. Thus, there exists an orthonormal basis {ek}k≥0 of HS , such that
−|LO|ek = −µ2kek with 0 = µ20 ≤ µ21 ≤ · · · . Since dimker(−|LO|) < ∞, we assume
e0, e1, · · · , eK0 spans the kernel space of −|LO| for some K0 > 0 with µ0 = µ1 = · · · =
µK0 = 0. The singular value gap s(LO) can be characterized by s(LO) = infk>K0{µ2k} >
0, by 6.1.

Now we define the time-augmented basis:

Ha
k =(t− (T − t)) ek, 0 ≤ k ≤ K0, (E.13)

Ha
k =

(
e−µkt − e−µk(T−t)

)
ek, k > K0, (E.14)

Hs
k =

(
e−µkt + e−µk(T−t)

)
ek, k > K0, (E.15)
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which constitutes an orthogonal basis of the subspace:

H ={Xt ∈ L2
⊥([0, T ];HS);Xt ∈ H2([0, T ];HS), (E.16)

Xt ∈ Dom(LO) for a.e. t, ∂ttXt − (−|LO|)Xt = 0}. (E.17)

It allows us to further decompose L2
⊥([0, T ];HS) into symmetric and antisymmetric

modes with low and high energies:

L2
⊥([0, T ];HS) = Hl,a ⊕Hl,s ⊕Hh,a ⊕Hh,s︸ ︷︷ ︸

=H

⊕H⊥, (E.18)

where:

Hl,a = Span

{
Ha

k ;µ
2
k ≤ 4

T 2

}
, Hl,s = Span

{
Hs

k;µ
2
k ≤ 4

T 2

}
, (E.19)

Hh,a = Span

{
Ha

k ;µ
2
k >

4

T 2

}
, Hh,s = Span

{
Hs

k;µ
2
k >

4

T 2

}
. (E.20)

Now we leverage the decomposition (E.18), and construct a coupled solution (Zt, Yt)
in each subspace with Dirichlet form estimations.

Case 1: Xt ∈ H⊥. Define L̃O := ∂tt − |LO| on L2([0, T ];HS) with Neumann boundary
condition in t and the domain given by

Dom
(
L̃O

)
=

{
Xt ∈ L2([0, T ];HO);Xt ∈ H2([0, T ];HO), Xt ∈ Dom(LO) for a.e. t,

(E.21)

∂tXt|t=0,T = 0, L̃O(Xt) ∈ L2([0, T ];HO)

}
. (E.22)

Also note that:

ker
(
L̃O

)
= {Xt ∈ L2([0, T ];HS);Xt = X0 for a.e. t, X0 ∈ ker(LO)}. (E.23)

We denote P and P̃ the projections to ker(LO) and ker(L̃O) respectively, which satis-
fies:

P̃Xt =
1

T

∫ T

0
PXtdt. (E.24)

Then by tensorization technique in [LL24, Lemma 4.5], we have the Poincaré inequality
for L̃O:

∥Xt − P̃Xt∥2T,HO
= ∥Xt − P̃Xt∥2T,HO

+ ∥PXt − P̃Xt∥2T,HO
(E.25)

≤ 1

s(LO)
ET,−|LO|(Xt) +

T 2

π2
∥∂tPXt∥2T,HO

(E.26)

≤ max

{
1

s(LO)
,
T 2

π2

}
⟨Xt,−L̃OXt⟩T,HO

. (E.27)
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It follows that −L̃O : Dom(L̃O) ∩ L2
⊥([0, T ];HO) → L2

⊥([0, T ];HO) admits a bounded
inverse:

G̃ : L2
⊥([0, T ];HO) → Dom(L̃O) ∩ L2

⊥([0, T ];HO), (E.28)

with operator norm bound:

∥G̃∥L2
⊥([0,T ];HO)→L2

⊥([0,T ];HO) ≤ max

{
1

s(LO)
,
T 2

π2

}
. (E.29)

We define Yt = G̃Xt and Zt = −∂tYt that solves the divergence equation with Zt|t=0,T = 0
since Yt = G̃Xt satisfies Neumann boundary condition in t. To illustrate that Yt satisfies
the Dirichlet boundary condition, we take Wt ∈ H, then the integration by parts gives:

0 = ⟨Wt, Xt⟩T,HO
= ⟨Wt,−L̃OYt⟩T,HO

= ⟨−L̃OWt, Yt⟩T,HO
+ ⟨∂tWt, Yt⟩HO

|t=T
t=0 , (E.30)

which implies Y0 = YT = 0 since L̃OWt = 0 and (E.30) holds for all Wt|t=0,T = 0.
Now we estimate the energy. Firstly, we note that the operators ∂tt and −|LO| on

L2
⊥([0, T ];HO) → Dom(L̃O) commute and admit discrete spectrum, as demonstrated in

[EGH+25]. Also, it holds that both the operator norms of −|LO|G̃ and ∂ttG̃ are bounded
by 1. This allows us to conclude that in the case Xt ∈ H⊥, we have:

∥|LO|Yt∥T,HO
≤ ∥|LO|G̃Xt∥T,HO

≤ ∥Xt∥T,HO
, (E.31)

ET,−|LO|(Zt) = ET,−|LO|(∂tYt) = ⟨∂ttG̃Xt, (−|LO|)G̃Xt⟩T,HO
≤ ∥Xt∥2T,HO

, (E.32)

ET,−|LO|(Yt) = −⟨G̃Xt, (−|LO|)G̃Xt⟩T,HO
≤ max

{
1

s(LO)
,
T 2

π2

}
∥Xt∥2T,HO

, (E.33)

that is, the estimates hold with:

c1 = c2 = c4 = 1, c3 = max

{
1√
s(LO)

,
T

π

}
. (E.34)

Case 2: Xt ∈ Hl,a. In this case, we set Zt =
∫ t
0 Xsds and y = 0, which solves the

equation with Zt|t=0,T = Yt|t=0,T . We estimate:

∥Zt∥2T,HS
=

1

T

∫ T

0

〈∫ t

0
Xsds,

∫ t

0
Xsds

〉
HS

dt (E.35)

≤ 1

T

∫ T

0
t

∫ t

0
⟨Xs, Xs⟩HS

dsdt (E.36)

≤
∫ T

0
tdt∥Xt∥2T,HS

(E.37)

=
T 2

2
∥Xt∥2T,HS

, (E.38)
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where the second line comes from the convexity of ∥ · ∥2HS
. Likewise, we have:

∥|LO|Zt∥2T,HS
≤ 1

T

∫ T

0
tdt

∫ t

0
∥|LO|Xs∥2HS

ds. (E.39)

From the definition of Hl,a, we have:

∥|LO|Zt∥2T,HS
≤ 1

T

∫ T

0
tdt

∫ t

0
∥|LO|Xs∥2HS

ds (E.40)

≤ 1

T

∫ T

0
tdt

∫ t

0

16

T 4
∥Xs∥2HS

ds (E.41)

≤ 8

T 2
∥Xt∥2T,HS

. (E.42)

Thus, it follows that by the Cauchy inequality that:

ET,−|LO|(Zt) ≤ 2∥Xt∥2T,HS
. (E.43)

Thus, we conclude that for Xt ∈ Hl,a, we have:

c1 = c3 = c4 = 0, c2 =
√
2. (E.44)

Case 3: Xt ∈ Hl,s. Following [EL24b, Theorem 15], we consider decomposition Xt =

X
(0)
t +X

(1)
t , where X(0)

t = X0 cos(
2πt
T ). By definition, there holds:∫ T

0
X

(0)
t dt = 0, X

(1)
t |t=0,T = 0. (E.45)

We then set Zt =
∫ t
0 X

(0)
t ds that satisfies the Dirichlet boundary condition on [0, T ],

and Yt = GX
(1)
t , where G is defined as the inverse of |LO| on finite-dimensional space

Span({ek; 0 < µ2k ≤ 2
T }). Apparently, we have:

∂tZt − (−|LO|)Yt = X
(0)
t +X

(1)
t = Xt. (E.46)

It suffices to estimate the energy. Note that:

∥X(0)
t ∥2T,HO

=
T

2
∥x0∥2HO

(E.47)

=
T

2

∑
0<µk≤ 2

T

b2k(1 + e−µkT )2 (E.48)

≤ 2T
∑

0<µk≤ 2
T

b2k (E.49)

≤ e2

2
∥Xt∥2T,HO

, (E.50)
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and that under expansion Xt =
∑

0<µk≤ 2
T
bkH

s
A:

∥Xt∥2T,HS
=

∑
0<µk≤ 2

T

b2k

∫ T

0

(
e−µkt + e−µk(T−t)

)2
dt (E.51)

≥
∑

0<µk≤ 2
T

Tb2k min
t∈[0,T ]

(
e−µkt + e−µk(T−t)

)2
(E.52)

=
∑

0<µk≤ 2
T

4e−µkTTb2k (E.53)

≥ 4e−2T
∑

0<µk≤ 2
T

b2k. (E.54)

Combining (E.50) and (E.54), we observe:

∥|LO|Yt∥2T,HO
= ∥X(1)

t ∥2T,HO
≤ (1 + e/

√
2)2∥Xt∥2T,HO

. (E.55)

Arguing by the same procedure as (E.43), we obtain:

ET,−|LO|(Zt) ≤ 2∥X(0)
t ∥2T,HO

≤ e2∥Xt∥2T,HO
. (E.56)

Applying the Poincaré inequality of −|LO| to (E.56) and combing the estimate of
(E.55), we have:

ET,−|LO|(Yt) ≤
1

s(LO)
∥|LO|Yt∥2T,HO

≤ 1

s(LO)
(1 + e/

√
2)2∥Xt∥2T,HO

, (E.57)

ET,−|LO|(∂tYt) ≤
1

s(LO)
∥∂tX(1)

t ∥2T,HO
. (E.58)

Moreover, by the same argument as (E.50), we have:

∥∂tX(1)
t ∥T,HO

≤ ∥∂tX(0)
t ∥T,HS

+ ∥∂tXt∥T,HS
(E.59)

≤
√
2πe+ 2

T
∥Xt∥T,HO

. (E.60)

Plugging (E.60) in (E.58), we derive:

ET,−|LO|(∂tYt) ≤
1

s(LO)
∥∂tX(1)

t ∥2T,HO
(E.61)

≤(
√
2πe+ 2)2

T 2s(LO)
∥Xt∥T,HO

. (E.62)

Thus, for Xt ∈ Hl,s we have:

c1 = 1 +
e√
2
, c2 = e, c3 =

1 + e/
√
2√

s(LO)
, c4 =

√
2πe+ 2√
s(LO)T

. (E.63)
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Case 4: Xt ∈ Hh,a. By completeness and linearity, it suffices to construct (Zt, Yt) for
each basis Xt = Ha

k =
(
e−µkt − e−µk(T−t)

)
ek for µk ≥ 2

T . We set uk(t) = e−µkt −
e−µk(T−t), and consider the following ansatz:

Zt = vk(t)ek, Yt =
1

µ2k
wk(t)ek, (E.64)

with vk|t=0,T = 0, wk|t=0,T = 0. It follows from the construction that:

∂tZt − (−|LO|)Yt =
(
v′k(t) + wk(t)

)
ek = uk(t)ek, (E.65)

or equivalently, uk(t) = v′k(t)+wk(t). Now we construct the functions vk and wk satisfying
this condition as provided in [EL24b]. Firstly, we let:

φk(t) = (µkt− 1)2χ[0,µ−1
k ](t) ∈ C1([0, 1]), (E.66)

satisfying φk(
T
2 ) = 0. Then, for t ∈ [0, T2 ], we define:

vk(t) = φk(t)

∫ t

0
uk(s)ds, wk(t) = uk(t)− v̇k(t) = (1− φk(t))uk(t)− φ̇k(t)

∫ t

0
uk(s)ds,

(E.67)

and for t ∈ [T2 , T ], we set:

vk(t) = −φk(T − t)

∫ T

t
uk(s)ds, wk(t) = uk(t)− v̇k(t). (E.68)

Apparently, vk and wk constructed above are continuous and piecewise C1 with vk|t=0 =
vk|t=T = 0. Also, we observe that:

wk(0) = uk(0)− v̇k(0) = 0, wk(T ) = uk(t)− v̇k(T ) = 0. (E.69)

Furthermore, we have:

vk

(
T

2

)
= v̇k

(
T

2

)
= 0, v̇k(0) = uk(0), v̇k(T ) = uk(T ). (E.70)

Hence, it suffices to attain energy estimation. We compute:

∥|LO|Yt∥2T,HO
=

1

T

∫ T

0
w2
k(t)dt, ET,−|LO|(Zt) =

µ2k
T

∫ T

0
v2k(t)dt, (E.71)

ET,−|LO|(Yt) =
1

µ2kT

∫ T

0
w2
k(t)dt, ET,−|LO|(∂tYt) =

1

µ2kT

∫ T

0
ẇ2
k(t)dt, (E.72)

and that ∥Xt∥2T,HS
= 1

T

∫ T
0 u2k(t)dt. Estimating such integrals as [EL24b] yields con-

stants:

c1 = 1 +
1√
3
, c2 =

1√
30
, c3 =

T

2

(
1 +

1√
3

)
, c4 = 8. (E.73)
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Case 5: Xt ∈ Hh,s. This case can be obtained similarly as Case 4. We consider Xt =

Hs
k = uk(t)ek for µk ≥ 2

T , where uk = e−µkt + e−µk(T−t) and (Zt, Yt) has same ansatz
as in (E.64). The constructions of vk and wk are identical to those of Case 4. The
only difference occurs when we bound ∥Xt∥2T,HS

= 1
T

∫ T
0 u2k(t)dt due to different uk. By

computations in [EL24b], we conclude that:

c1 = 1 +
1√
3
, c2 =

1√
30
, c3 =

T

2

(
1 +

1√
3

)
, c4 = 5 +

√
2. (E.74)

Combining (E.34), (E.44), (E.63), (E.73), and (E.74), the conclusion follows by rescal-
ing.

Lemma E.2 (Coupling Strength Estimates, cf. Lemma 6.2). Under Assumption 6.2, for
sufficiently regular paths Xt ∈ Dom(R) and Yt ∈ Dom(LO), the following bounds hold:

|⟨RXt, SVYt⟩H| ≤
√

ER(Xt)(E−|LO|(Yt) + ηCAQF ∥Yt∥2H), (E.75)

|⟨Xt − PSXt,VYt⟩H| ≤
√
ER(Xt)(E−|LO|(Yt) + ηCAQF ∥Yt∥2H), (E.76)

|⟨V(Xt − PSXt), SVYt⟩H| ≤ ∥Xt − PSXt∥H
(
K2∥|LO|Yt∥HS

+K3

√
E−|LO|(Yt)

)
.

(E.77)

Proof. We establish each inequality in turn, using the Cauchy-Schwarz inequality, the
Ad Embed structure (Definition 5.1), and Assumption 6.2. Let XF

t = Xt − PSXt. Note
that ER(Xt) = −⟨Xt,RXt⟩ = −⟨XF

t ,RXF
t ⟩ = ER(XF

t ).
Proof of first inequality: We manipulate the inner product using S1/2.

⟨RXt, SVYt⟩ = ⟨S1/2RXt, S
1/2VYt⟩ (E.78)

≤ ∥S1/2RXt∥∥S1/2VYt∥ (by C-S). (E.79)

We evaluate the norms. First, ∥S1/2RXt∥2 = ⟨RXt, SRXt⟩ = ⟨Xt,RSRXt⟩. Since
RSR = R(−R+)R = −R on HF , this becomes ⟨XF

t ,−RXF
t ⟩ = ER(XF

t ) = ER(Xt).
Thus, ∥S1/2RXt∥ =

√
ER(Xt). Second, from the explicit Approximate Quadratic Form

condition (5.3) withX = Y = Yt: ∥S1/2VYt∥2 = ⟨VYt, SVYt⟩ ≤ ⟨Yt, |LO|Yt⟩+ηCAQF ∥Yt∥2H =
E−|LO|(Yt) + ηCAQF ∥Yt∥2H. Combining these gives:

|⟨RXt, SVYt⟩| ≤=
√
ER(Xt)(E−|LO|(Yt) + ηCAQF ∥Yt∥2H). (E.80)

Proof of second inequality: We use S1/2 and S−1/2 =
√
−R|HF

on HF .

⟨XF
t ,VYt⟩ = ⟨S−1/2XF

t , S
1/2VYt⟩ (E.81)

≤ ∥S−1/2XF
t ∥∥S1/2VYt∥ (by C-S). (E.82)
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We evaluate ∥S−1/2XF
t ∥2 = ⟨XF

t , S
−1XF

t ⟩ = ⟨XF
t , (−R)XF

t ⟩ = ER(XF
t ) = ER(Xt).

Thus, ∥S−1/2XF
t ∥ =

√
ER(Xt). Using the result for ∥S1/2VYt∥ from the previous step:

|⟨XF
t ,VYt⟩| ≤

√
ER(Xt)(E−|LO|(Yt) + ηCAQF ∥Yt∥2H). (E.83)

Proof of third inequality: We move the operator V using the adjoint.

⟨VXF
t , SVYt⟩ = ⟨XF

t ,V∗SVYt⟩ (E.84)

= ⟨XF
t , (1− PS)V∗SVYt⟩ (since XF

t ∈ HF ). (E.85)

Applying Cauchy-Schwarz:

|⟨VXF
t , SVYt⟩| ≤ ∥XF

t ∥∥(1− PS)V∗SVYt∥. (E.86)

Using Assumption 6.2(3):

|⟨VXF
t , SVYt⟩| ≤ ∥Xt − PSXt∥H

(
K2∥|LO|Yt∥HS

+K3

√
E−|LO|(Yt)

)
. (E.87)

This completes the proof of all three inequalities.

Theorem E.2 (Flow Poincaré Inequality for Ad Embed, cf. Theorem 6.3). Let CAQF be
the constant from the Approximate Quadratic Form condition. Assume η is sufficiently
small such that 1−ηCcorr > 0, where Ccorr = CAQF s(LO)

−1c1(T ) is a correction constant
derived in the proof. Under Assumption 6.2, for any T > 0 and initial state X0 ∈
F⊥ ∩Dom(L), the trajectory Xt = PtX0 satisfies:

αT (η)∥Xt∥2T,H ≤ ET,R(Xt), (E.88)

with

αT (η) =

[
2Ã1(T, η)

2γ2 + 4Ã1(T, η)Ã2(T, η)γ + 2Ã2(T, η)
2

(1− ηCcorr)2
+

1

λR

]−1

, (E.89)

where the η-dependent coefficients are:

Ã1(T, η) = c3(T ) +
√
ηCAQF s(LO)

−1c1(T ), (E.90)

Ã2(T, η) = K1c2(T ) + λ
−1/2
R (∥S∥1/2c4(T ) +K2c1(T ) +K3c2(T ))

+
√
ηCAQFK1s(LO)

−1/2c2(T ). (E.91)

Here, ci(T ) are constants defined in Theorem 6.2.

Proof. Let Xt = PtX0 be the trajectory evolving under the generator L = γR + V.
We denote by PS the orthogonal projection onto the slow subspace HS = ker(R), and
let XF

t = (1 − PS)Xt be the component in the fast subspace HF . By assumption, the
projected path PSXt lies in L2

⊥([0, T ];HS).
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The proof strategy relies on decomposing the total norm ∥Xt∥2T,H into slow and fast
components and bounding each in relation to the dissipation ET,R(Xt) =

1
T

∫ T
0 ER(Xt)dt.

The orthogonal decomposition yields:

∥Xt∥2T,H = ∥PSXt∥2T,HS
+ ∥XF

t ∥2T,H. (E.92)

The fast component is controlled by the coercivity of R on HF (gap λR > 0):

∥XF
t ∥2T,H ≤ 1

λR
ET,R(XF

t ) =
1

λR
ET,R(Xt). (E.93)

The central task is to estimate the slow component ∥PSXt∥2T,HS
. We employ the auxiliary

paths (Zt, Yt) solving the abstract divergence equation ∂tZt + |LO|Yt = PSXt, as guar-
anteed by Theorem 6.2. Integrating by parts and applying the Inner Product Reduction
Lemma E.1 leads to the identity:

∥PSXt∥2T,HS
= ⟨APSXt, Zt + SVYt⟩T,H +RT,η(PSX,Y ), (E.94)

where the remainder term satisfies |RT,η(PSX,Y )| ≤ ηCAQF
1
T

∫ T
0 ∥PSXt∥H∥Yt∥Hdt. We

decompose the inner product term using PSXt = Xt −XF
t :

⟨APSXt, Zt + SVYt⟩T,H = ⟨AXt, Zt + SVYt⟩T,H − ⟨AXF
t , Zt + SVYt⟩T,H. (E.95)

Using AXt = −γRXt and AXF
t = −∂tXF

t + VXF
t , and performing integration by parts

on the time derivative terms (while noting ⟨RXt, Zt⟩ = 0 and ⟨XF
t , ∂tZt⟩ = 0), we arrive

at the identity:

∥PSXt∥2T,HS
≤γ|⟨RXt, SVYt⟩T,H| (Term 1)

+ |⟨VXF
t , Zt⟩T,H| (Term 2)

+ |⟨XF
t , ∂t(SVYt)⟩T,H| (Term 3)

+ |⟨VXF
t , SVYt⟩T,H| (Term 4)

+ |RT,η(PSX,Y )|. (E.96)

Now we deal with all these terms one by one, using the explicit bounds from Lemma
E.2. For Term 1, we note that ∥Yt∥T,H ≤ s(LO)

−1c1(T )∥PSXt∥T,HS
. Thus:

γ|⟨RXt, SVYt⟩T,H| ≤ γ
√
ET,R(Xt)(ET,−|LO|(Yt) + ηCAQF ∥Yt∥2T,H) (E.97)

≤ γ
√
ET,R(Xt)

(√
ET,−|LO|(Yt) +

√
ηCAQF ∥Yt∥T,H

)
(E.98)

≤ γ
√
ET,R(Xt)

(
c3(T ) +

√
ηCAQF s(LO)

−1c1(T )
)
∥PSXt∥T,HS

.

(E.99)
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For Term 2, using ∥Zt∥T,H ≤ s(LO)
−1/2c2(T )∥PSXt∥T,HS

:

|⟨VXF
t , Zt⟩T,H| ≤ K1

√
ET,R(Xt)

(√
ET,−|LO|(Zt) +

√
ηCAQF ∥Zt∥T,H

)
(E.100)

≤ K1

√
ET,R(Xt)

(
c2(T ) +

√
ηCAQF s(LO)

−1/2c2(T )
)
∥PSXt∥T,HS

.

(E.101)

For Term 3:

|⟨XF
t , ∂t(SVYt)⟩T,H| ≤ ∥S∥1/2λ−1/2

R c4(T )
√
ET,R(Xt)∥PSXt∥T,HS

. (E.102)

For Term 4:

|⟨VXF
t , SVYt⟩T,H| ≤ λ

−1/2
R

√
ET,R(Xt)(K2c1(T ) +K3c3(T ))∥PSXt∥T,HS

. (E.103)

For the remainder term:

|RT,η(PSX,Y )| ≤ ηCAQF
1

T

∫ T

0
∥PSXt∥H∥Yt∥Hdt (E.104)

≤ ηCAQF ∥PSXt∥T,HS
∥Yt∥T,H (E.105)

≤ ηCAQF s(LO)
−1c1(T )∥PSXt∥2T,HS

. (E.106)

Let’s define ηCcorr = ηCAQF s(LO)
−1c1(T ). Combining all estimates:

∥PSXt∥2T,HS
≤ (γÃ1(T, η) + Ã2(T, η))

√
ET,R(Xt)∥PSXt∥T,HS

+ ηCcorr∥PSXt∥2T,HS
,

(E.107)

where Ã1(T, η) = c3(T ) +
√
ηCAQF s(LO)

−1c1(T ) and Ã2(T, η) is the sum of the other
coefficients. Rearranging, and assuming η is small enough that 1− ηCcorr > 0:

(1− ηCcorr)∥PSXt∥2T,HS
≤ (γÃ1(T, η) + Ã2(T, η))

√
ET,R(Xt)∥PSXt∥T,HS

. (E.108)

Dividing by ∥PSXt∥T,HS
(if non-zero, else trivial):

∥PSXt∥T,HS
≤ γÃ1(T, η) + Ã2(T, η)

1− ηCcorr

√
ET,R(Xt). (E.109)

Plugging this into the decomposition ∥Xt∥2T,H = ∥PSXt∥2 + ∥XF
t ∥2:

∥Xt∥2T,H ≤

(
γÃ1(T, η) + Ã2(T, η)

1− ηCcorr

)2

ET,R(Xt) +
1

λR
ET,R(Xt) (E.110)

=

[
(γÃ1(T, η) + Ã2(T, η))

2

(1− ηCcorr)2
+

1

λR

]
ET,R(Xt). (E.111)

Defining αT (η) as the inverse of the bracketed term yields the desired inequality.
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Theorem E.3 (T -Average Convergence Lower Bound, cf. Theorem 6.4). Let the gen-
erator L = γR + V satisfy the assumptions of Theorem 6.3. Assume η is sufficiently
small such that αT (η) > 0. For any observation period T > 0, provided the effective rate
νeff defined below is positive, any initial state X0 ∈ F⊥ ∩Dom(L) exhibits time-averaged
strict exponential decay bounded by:

1

T

∫ t+T

t
∥PsX0∥2Hds ≤ e−2νefft∥X0∥2H, (E.112)

where the decay rate parameter νeff depends on γ, η, T as

νeff = νeff(γ, η, T ) := γαT (η)− η∥Lpert∥. (E.113)

Proof. The proof is a standard Grönwall-type argument based on Theorem 6.3. We begin
by defining the T -averaged energy functional for a trajectory X:

ET (t) :=
1

T

∫ t+T

t
∥Xs∥2Hds. (E.114)

Taking the time derivative and using the fundamental theorem of calculus, we have:

d

dt
ET (t) =

1

T
(∥Xt+T ∥2H − ∥Xt∥2H) (E.115)

=
1

T

∫ t+T

t

d

ds
∥Xs∥2Hds (E.116)

=
2

T

∫ t+T

t
Re⟨Xs, LXs⟩Hds. (E.117)

Note that L = V + γR = Lham + ηLpert + γR, and Lham is skew-adjoint, we have:

d

dt
ET (t) =

2

T

∫ t+T

t
Re⟨Xs, (ηLpert + γR)Xs⟩Hds (E.118)

=
2η

T

∫ t+T

t
Re⟨Xs, LpertXs⟩Hds+

2γ

T

∫ t+T

t
⟨Xs,RXs⟩Hds. (E.119)

Selecting time interval [t, t+ T ] in Theorem 6.3, we have:

−
∫ t+T

t
⟨Xs,RXs⟩Hds = ET,R(Xt) ≥ αT (η)

∫ t+T

t
∥Xs∥2Hds = αT (η)TET (t). (E.120)

On the other hand, as for the perturbation, we note that:

2η

T

∫ t+T

t
Re⟨Xs, LpertXs⟩Hds ≤ 2η∥Lpert∥

1

T

∫ t+T

t
∥Xs∥2Hds = 2η∥Lpert∥ET (t).

(E.121)
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Plugging them into the time derivative:

d

dt
ET (t) ≤ −2γαT (η)ET (t) + 2η∥Lpert∥ET (t) = −2(γαT (η)− η∥Lpert∥)ET (t). (E.122)

Applying Grönwall’s inequality, we have:

ET (t) ≤ ET (0) exp(−2νefft), (E.123)

where νeff = γαT (η)−η∥Lpert∥. By contractivity of the semigroup, ET (0) =
1
T

∫ T
0 ∥Xs∥2Hds ≤

∥X0∥2H. Thus:

1

T

∫ t+T

t
∥Xs∥2Hds ≤ exp(−2νefft)∥X0∥2H, (E.124)

as desired.

Corollary E.1 (Near-optimal Selection of γ, cf. Corollary 6.1). Assume η is sufficiently
small such that αT (η) > 0. Under the assumptions of Theorem 6.4, for any T > 0 and
initial state X0 ∈ F⊥ ∩ Dom(L), the trajectory Xt = PtX0 satisfies the pointwise decay
bound:

∥Xt∥H ≤ CT e
−νefft∥X0∥H, (E.125)

where the decay rate is νeff = γαT (η)− η∥Lpert∥ and the prefactor is CT = eνeffT .
Furthermore, for a fixed T , the lower bound on the decay rate νeff is maximized by

choosing γ near-optimally as

γopt(T ) =
1

Ã1(T, η)

√
Ã2(T, η)2 +

(1− ηCcorr)2

2λR
, (E.126)

where Ã1(T, η), Ã2(T, η) and Ccorr are the constants defined in the proof of Theorem 6.3.
This choice yields the corresponding maximal rate lower bound:

νopt(T ) =
1− ηCcorr

2
√
2Ã1

(√
2Ã2 +

√
2Ã2

2 +
(1−ηCcorr)2

λR

) − η∥Lpert∥. (E.127)

For compactness, let Âi =
√
2Ãi

1−ηCcorr
, then νopt(T ) =

1

2Â1(Â2+
√

Â2
2+λ−1

R )
− η∥Lpert∥.

Proof. Since the semigroup {Pt}t≥0 is contractive, the function s → ∥Xs∥2H is non-
increasing. Therefore, for all s ∈ [t, t+ T ], we have ∥Xt+T ∥2H ≤ ∥Xs∥2H. Integrating over
[t, t+ T ] yields:

∥Xt+T ∥2H ≤ 1

T

∫ t+T

t
∥Xs∥2Hds ≤ exp(−2νefft)∥X0∥2H. (E.128)
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We perform a time translation to obtain the hypocoercive bound. Set t′ = t+T , namely
t = t′ − T , the inequality above gives:

∥Xt′∥2H ≤ exp(2νeffT ) exp(−2νefft
′)∥X0∥2H. (E.129)

Taking the square root, we have:

∥Xt∥H ≤ CT exp(−νefft)∥X0∥H, (E.130)

where CT = exp(νeffT ).
To compute the optimal γ, we maximize νeff(γ) = γαT (η) − η∥Lpert∥. It suffices to

maximize f(γ) = γαT (η). Let Â1 =
√
2Ã1(T,η)

1−ηCcorr
and Â2 =

√
2Ã2(T,η)

1−ηCcorr
. From Theorem 6.3,

αT (η)
−1 = Â2

1γ
2 +2Â1Â2γ + Â2

2 + λ−1
R . We maximize f(γ) = γ

Â2
1γ

2+2Â1Â2γ+Â2
2+λ−1

R

. The

maximum occurs at γopt =

√
Â2

2+λ−1
R

Â1
= 1

Ã1(T,η)

√
Ã2(T, η)2 +

(1−ηCcorr)2

2λR
. The maximal

value is f(γopt) = 1

2Â1(Â2+
√

Â2
2+λ−1

R )
. Substituting this back into the expression for νeff

gives the stated result.

Corollary E.2 (Strict Asymptotic Rate Scaling, cf. Corollary 6.2). Let s := s(LO)
denote the singular value gap of the target effective generator. Under the assumptions of
Theorem 6.3, suppose the structural constants satisfy the scaling conditions K1,K2, λR, ∥S∥ =
Θ(1) and K3 = Θ(

√
s). Assume further that the Approximate Quadratic Form constant

scales inversely with the gap, CAQF = Θ(s−1), and that the non-conservative perturbation
strength is strictly subdominant to the squared gap, specifically:

η = o(s2) as s→ 0. (E.131)

Then, by choosing the observation time optimally as Topt = cs−1/2 for some constant
c > 0, the maximal convergence rate lower bound exhibits the strict asymptotic scaling:

νopt(Topt) = Θ(
√
s) as s→ 0. (E.132)

Moreover, the associated prefactor CTopt = eνoptTopt remains asymptotically bounded,
CTopt = Θ(1).

Proof. We rigorously bound the terms in the expression νopt(T ) = 1−ηCcorr

D(T ) − η∥Lpert∥.
First, we analyze the stability of the flow correction factor. Recall from Theorem 6.3

that Ccorr = CAQF c1(T )s
−1. Using the premise CAQF = Θ(s−1) and noting that at the

optimal time scale Topt = Θ(s−1/2), the energy constant satisfies c1(Topt) = Θ(1), the
correction factor scales as:

Ccorr = Θ(s−1) ·Θ(1) · s−1 = Θ(s−2). (E.133)

Under the assumption η = o(s2), the product ηCcorr = o(s2) · Θ(s−2) = o(1). This
guarantees the strict positivity condition 1 − ηCcorr = 1 − o(1), which is well-behaved
asymptotically.
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Next, we estimate the η-dependent coefficients Ã1 and Ã2. For Ã1, recalling that
c3(Topt) = Θ(s−1/2):

Ã1(Topt) = c3(Topt) +
√
ηCAQF s

−1c1(Topt) (E.134)

= Θ(s−1/2) +
√
o(s2)Θ(s−1) · s−1 ·Θ(1) (E.135)

= Θ(s−1/2) + o(
√
s) · s−1 (E.136)

= Θ(s−1/2) + o(s−1/2) = Θ(s−1/2). (E.137)

For Ã2, we utilize the assumption K3 = Θ(
√
s), which implies the unperturbed term

A2(Topt) = Θ(1):

Ã2(Topt) = A2(Topt) +
√
ηCAQFK1s

−1/2c2(Topt) (E.138)

= Θ(1) +
√
o(s2)Θ(s−1) ·Θ(1) · s−1/2 ·Θ(1) (E.139)

= Θ(1) + o(
√
s) · s−1/2 (E.140)

= Θ(1) + o(1) = Θ(1). (E.141)

We now bound the denominator D(Topt) appearing in the rate expression:

D(Topt) =
2
√
2Ã1

1− ηCcorr

 √
2Ã2

1− ηCcorr
+

√
2Ã2

2

(1− ηCcorr)2
+

1

λR

 (E.142)

=
Θ(s−1/2)

1− o(1)

(
Θ(1) +

√
Θ(1) + Θ(1)

)
(E.143)

= Θ(s−1/2). (E.144)

Finally, substituting these asymptotic forms back into νopt:

νopt(Topt) =
1− o(1)

Θ(s−1/2)
− η∥Lpert∥ (E.145)

= Θ(
√
s)− o(s2) = Θ(

√
s). (E.146)

The perturbative decay term η∥Lpert∥ is negligible because o(s2) vanishes strictly faster
than the lifting rate

√
s as s→ 0. The prefactor exponent is νoptTopt = Θ(

√
s)·Θ(s−1/2) =

Θ(1), implying CTopt = eΘ(1) = Θ(1).
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