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Abstract
High-dimensional partial differential equations (PDEs) pose significant computational
challenges across fields ranging from quantum chemistry to economics and finance. Although
scientific machine learning (SciML) techniques offer approximate solutions, they often
suffer from bias and neglect crucial physical insights. Inspired by inference-time scaling
strategies in language models, we propose Simulation-Calibrated Scientific Machine Learning
(SCaSML), a physics-informed framework that dynamically refines and debiases the SCiML
predictions during inference by enforcing the physical laws. SCaSML leverages derived new
physical laws that quantifies systematic errors and employs Monte Carlo solvers based on the
Feynman–Kac and Elworthy–Bismut–Li formulas to dynamically correct the prediction. Both
numerical and theoretical analysis confirms enhanced convergence rates via compute-optimal
inference methods. Our numerical experiments demonstrate that SCaSML reduces errors
by 20–50% compared to the base surrogate model, establishing it as the first algorithm to
refine approximated solutions to high-dimensional PDE during inference. Code of SCaSML is
available at https://github.com/Francis-Fan-create/SCaSML.

a)
Different Themes for solving 
High-Dimensional PDEs

Physics-Informed Inference Times Scaling via 
Simulation Calibritaed Scientific Machine learning

Neural Network Tensor Network

Kernel Approximation

Theme 1. Train a Surrogate Model

Theme 2. Stochastic Simulation

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ Δ𝜕𝜕 + 𝑓𝑓(𝜕𝜕) = 0
Feynman-Kac Formula

Step 1. Train a Surrogate Model

Step 2. Model the Residual via PDE

We show that the defect 𝜕𝜕∞ − �𝜕𝜕 can be formulated as the solution 
of another semi-linear Parabolic equation. [Fact 1.]

Step 3. Stochastic Simulate the Residual

Stochastic Simulation enables
Inference Time Scaling

�𝜕𝜕

�𝜕𝜕 = 𝜕𝜕∞ − �𝜕𝜕

b)
Nonlinear term


𝒜u + f(u) = 0 (1)
Linear differential operator


e.g. 
𝒜u = ∂u
∂t

+ Δu

Semi-linear  PDEs:

𝒜 ̂u + f( ̂u) = ϵ ≈ 0 (2)
Step 1: Surrogate Model  Step 2: Law of Defect

𝒜(u − ̂u) + f((u − ̂u) + ̂u) − f( ̂u) = ϵ
(1)-(2)

Small terms easy to simulate

A new semi-linear equation that characterize the defect Train a surrogate model  approximately 


solve the equation
̂u

Figure 1 | SCaSML framework
pipeline. a) SCaSML aims to al-
locate compute at inference time
to further improve the accuracy
of a surrogate model. It first fits
a surrogate model �̂� as an initial
estimate of the PDE solution 𝑢∞,
then leverages stochastic simula-
tion algorithms to approximate
the defect �̆� = 𝑢∞ − �̂� at infer-
ence time via formulating �̆� as the
solution to the law of defect. b)
Method for deriving the law of
defect. Using an approximate so-
lution of a semi-linear equation,
we derive a new differential equa-
tion that characterizes the error,
which inherently preserves the
semi-linear structure.
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1. Introduction

Accurate predictions of complex physical systems often rely on simulating partial differential
equations (PDEs), but high-dimensional PDEs pose significant computational challenges. Tradi-
tional methods, such as numerical simulations and analytical solutions, can be computationally
expensive and limited in scope. Recently, scientific machine learning (SciML) (Brunton and
Kutz, 2024; Han et al., 2018a; Long et al., 2018, 2019; Raissi et al., 2017), has emerged as a
promising approach that combines data-driven models with fundamental physical principles to
enhance both accuracy and efficiency in high-dimensional PDE simulations. However, SCiML
models can be biased due to limitations in their training processes, which may compromise
prediction accuracy. These biases raise concerns about their reliability compared to traditional,
theory-backed scientific computing methods.

Recent advances in large language models (LLMs) have shown that inference-time scaling,
using extra computational resources during prediction, can significantly improve output quality
(Brown et al., 2024; Gandhi et al., 2024; Snell et al., 2024; Wei et al., 2022; Wu et al., 2024). In this
work, we investigate the impact of inference-time scaling for SCiML models and answers the
following question:

How can we refine a machine-learned PDE solver at inference time to further improve
accuracy and reliability?

We introduce a novel physics-informed, inference-time scaling framework for scientific
machine learning. Our work aims to addresses high-dimensional partial differential equa-
tions afflicted by the curse of dimensionality, such as the Schrödinger equation in quantum
many-body systems, the nonlinear Black–Scholes equation in financial derivatives pricing, and
the Hamilton–Jacobi–Bellman equation in dynamic programming. Notably, these semi-linear
parabolic PDEs (Han et al., 2018a; Hutzenthaler et al., 2019; Weinan et al., 2021) can be expressed
as: {

𝜕
𝜕𝑟
𝑢∞ +

〈
𝜇,∇𝑦𝑢∞

〉
+ 1

2 Tr(𝜎∗Hess 𝑢∞ 𝜎) + 𝐹(𝑢∞, 𝜎∗∇𝑦𝑢∞) = 0, on [0,𝑇) ×R𝑑

𝑢∞(𝑇 , 𝑦) = 𝑔(𝑦), on R𝑑 .
(1)

where 𝑇 > 0, 𝑑 ∈ N, 𝑔 : R𝑑 → R, 𝑢∞ : [0,𝑇] ×R𝑑 → R, 𝜇 : [0,𝑇] ×R𝑑 → R𝑑 , and 𝜎 is a regular
function mapping [0,𝑇] ×R𝑑 to an invertible 𝑑 × 𝑑 real matrix. We then propose Simulation-
Calibrated Scientific Machine Learning (SCaSML), which calibrates the SCiML model during
inference. SCaSML first trains a surrogate model �̂�—which may be constructed using sparse
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grid (Bungartz and Griebel, 2004), neural networks (Han et al., 2018a; Karniadakis et al., 2021;
Yu et al., 2022), tensor networks (Bachmayr, 2023; Bachmayr et al., 2016; Chen et al., 2023; Richter
et al., 2021), or Gaussian processes (Chen et al., 2021; Yang et al., 2021)—and subsequently
introduces a novel Law of Defect (Figure 1 b) and Fact 1), a new partial differential equation
(PDE) where 𝑢 − �̂� represents its solution, aimed at quantifying the defect 𝑢 − �̂�. Remarkably, the
Law of Defect inherits the semilinear structure, enabling a stochastic simulation algorithm to
correct errors via Feynman path-based stochastic simulation algorithms.

Section 4 shows that using a pre-trained surrogate confines error accumulation to discrepan-
cies along the Feynman path. A better surrogate reduces simulation variance during inference,
thereby improving the convergence rate (see Remark 1). Moreover, our numerical experiments
demonstrate that inference-time corrections scale across broad solution domains for various
high-dimensional PDEs, reducing errors by approximately 50–80% for naive stochastic simula-
tion algorithms and 10–50% for surrogate models. The main contributions of this work can be
summarized as follows:

• We introduce the first (physics-informed) inference-time scaling framework for scientific
machine learning via derive a novel Law of Defect that quantifies the error in the
learned surrogate model. The Law of Defect inherent the semi-linear structure which
enables the use of a stochastic simulation algorithm to correct the surrogate model by
simulating error propagation along the Feynman path.

• We theoretically demonstrate that the error of the SCaSML algorithm can be bounded
by the product of the error of the stochastic simulation algorithm and the error from the
surrogate model, resulting in an improved convergence rate.

• We numerically evaluate SCaSML’s inference-time scaling for high-dimensional PDEs.
Applied to Gaussian Process and physics-informed neural network surrogates, SCaSML
reduces errors by 20 ∼ 50% for 100 dimensioanl PDEs, highlighting its promise in over-
coming the curse of dimensionality.

1.1. Related Works and Preliminaries

Hybrid Paradigm Hybrid approaches combining scientific computing and machine learning
have been explored—such as learning numerical schemes (Long et al., 2018, 2019) and iterative
method preconditioners (Hsieh et al., 2019; Zhang et al., 2022). However, SCaSML is the first
framework to achieve faster convergence than both traditional numerical solvers and machine
learning surrogates. Unlike recent studies (Joseph and Yan, 2015; Suo and Zhang, 2023; Zhou
et al., 2023) that debias solutions over the entire domain using finite difference techniques,
SCaSML leverages a Monte Carlo algorithm to refine a single state-space solution, yielding rapid
convergence improvements. In contrast to learning the PDE solution in whole-domain, whose
convergence rate is theoretically optimal using SCiML models (Lu et al., 2022a,b; Nickl et al.,
2020), our targeted debiasing strategy enables further convergence gains.

High-Dimensional PDE Solvers Many fundamental problems in science and engineering are
modeled using high-dimensional partial differential equations (PDEs). Examples include:

• Schrödinger equation in quantum many-body systems, where the dimension scales with
the number of particles.
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• Nonlinear Black–Scholes equation for pricing financial derivatives, with dimensionality
depending on the number of assets.

• Hamilton–Jacobi–Bellman equation in dynamic programming, where the dimension grows
with the number of agents or resources.

Notably, all these equations are semilinear parabolic PDEs (Han et al., 2018a; Hutzenthaler
et al., 2019; Weinan et al., 2021) where Monte Carlo systems are being explored to overcome the
"curse of dimension", such as BSDE-based methods with discretized expectations(Briand and
Labart, 2014; Geiss and Labart, 2016), branching diffusion methods (Bouchard et al., 2017; Henry-
Labordère et al., 2019), and the full-history multilevel Picard Iteration (MLP) (Grohs et al., 2022;
Hutzenthaler et al., 2020a). Neural networks in BSDE handle a variety of semilinear equations
but presents significant challenges due to both extended training durations and sensitivity to
parameters(Beck et al., 2019). Branching diffusion techniques are rather effective in the case of
certain nonlinear PDEs, yet its error analysis only applies to limited time scope and small initial
condition(Henry-Labordère et al., 2019). MLP alleviate the computational challenges associated
with high-dimensional gradient-independent PDEs (Hutzenthaler et al., 2021), theoretically
achieving a linear rate of convergence in relation to dimensionality, across any time frame.

2. Warm Up:High-Dimensional Linear Parabolic Equations

Consider the scenario of organizing a trip
wherein an AI assistant proposes a route,
but you corroborate it through a map.
Likewise, in this study, we enhance the
predictions of neural networks employ-
ing a Feynman path simulation approach.

Directly learning solutions for partial differential equations (PDEs) with a neural network is
often unreliable and difficult to validate because of inherent approximation errors and a lack of
convergence guarantees. To address these challenges, we propose a novel Simulation-Calibrated
Scientific Machine Learning (SCaSML) framework. First, the neural network generates an
initial, approximate solution that serves as a guiding estimate. We then refine this estimate by
incorporating the underlying physical principles. Specifically, we derive an equation governing
the discrepancy, �̂� − 𝑢∞, where �̂� represents the neural network solution and 𝑢∞ denotes the true
solution. We term this equation the “Law of Defect” and analyze its behavior using stochastic
simulation methods to enhance the reliability and robustness of the final solution.

This section presents our methodology through linear parabolic equations—a simplified ex-
ample that elucidates both our underlying philosophy and the rationale for achieving enhanced
convergence rates. Consider the high-dimensional linear parabolic PDE:{

𝜕
𝜕𝑟
𝑢(𝑟, 𝑦) +

〈
𝜇,∇𝑦𝑢(𝑟, 𝑦)

〉
+ 1

2 Tr
(
𝜎∗Hess𝑦 𝑢(𝑟, 𝑦) 𝜎

)
= 𝑓 (𝑟, 𝑦), on [0,𝑇) ×R𝑑 ,

𝑢(𝑇 , 𝑦) = 𝑔(𝑦), for all 𝑦 ∈ R𝑑 .
(2)

To address the challenges posed by high dimensionality, surrogate models such as Gaussian
processes (Chen et al., 2021; Yang et al., 2021), tensor networks (Bachmayr, 2023; Bachmayr et al.,
2016; Chen et al., 2023), and neural networks (E and Yu, 2018; Raissi et al., 2017; Sirignano and
Spiliopoulos, 2018) are typically employed to optimize a variational formulation over randomly
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sampled test points. However, these approaches often suffer from convergence issues and
overfitting in high-dimensional settings. The SCaSML framework overcomes these challenges
by correcting the biased solution �̂� through inference-time scaling. This is accomplished by
deriving a new PDE—referred to as the Law of defect—which, when integrated into the
surrogate model, effectively rectifies its shortcomings. Additionally, a numerical simulator is
employed at inference time to pinpoint the physical mechanisms underlying the bias.

Derivation of Law of Defect We begin by defining the residual of the surrogate model �̂�
with respect to the given partial differential equation (PDE). Specifically, we define

𝜀(𝑟, 𝑦) := 𝑓 (𝑟, 𝑦) −
(
𝜕�̂�(𝑟, 𝑦)
𝜕𝑟

+ ⟨𝜇,∇𝑦�̂�(𝑟, 𝑦)⟩ +
1
2

Tr
(
𝜎∗ Hess𝑦 �̂�(𝑟, 𝑦) 𝜎

))
,

which quantifies the discrepancy between the learned surrogate model �̂� and the PDE (2). If we
denote the defect by �̆�(𝑟, 𝑦) := 𝑢(𝑟, 𝑦) − �̂�(𝑟, 𝑦), then the defect satisfies what we refer to as the
Law of Defect.

The �̆�(𝑟, 𝑦) := 𝑢(𝑟, 𝑦) − �̂�(𝑟, 𝑦) is the solution to the following linear Parabolic equation:
𝜕�̆�(𝑟, 𝑦)
𝜕𝑟

+ ⟨𝜇,∇𝑦�̆�(𝑟, 𝑦)⟩ +
1
2

Tr
(
𝜎∗ Hess𝑦 �̆�(𝑟, 𝑦) 𝜎

)
= 𝜀(𝑟, 𝑦), on [0,𝑇) ×R𝑑 ,

�̆�(𝑇 , 𝑦) = 𝑔(𝑦) − �̂�(𝑇 , 𝑦), for all 𝑦 ∈ R𝑑 ,
(3)

which we call it Law of Defect.

If an estimated solution to Law of defect is obtained, the approximated defect resulting
can be used to refine the output of the learned surrogate model.

Rectify the Answer by Correcting Errors Along the Feynman Path To estimate the solution
of the law of defect, we can use the Feynman–Kac formula to express the defect �̆�(𝑠, 𝑥) as the
expectation of the error along the Feynman path. Specifically, we have

�̆�(𝑠, 𝑥) = E
[
𝑔
(
𝑋
𝑠,𝑥
𝑇

)
− �̂�

(
𝑇 , 𝑋 𝑠,𝑥𝑇

) ]
+ E

[∫ 𝑇

𝑠

𝜀
(
𝑡, 𝑋 𝑠,𝑥𝑡

)
𝑑𝑡

]
︸                   ︷︷                   ︸

accumulated error along the Feynman path

. (4)

By simulating the Feynman path and collecting the error 𝜀 as indicated in (4), one can
construct an unbiased stochastic simulation for the defect �̆�.

Remark 1 (How Does SCaSML Achieve a Faster Convergence Rate?). By employing a pre-trained
surrogate, the SCaSML algorithm accumulates only the error 𝜀(𝑡, 𝑋 𝑠,𝑥𝑡 ) along the Feynman path. Since
the simulation variance is proportional to 𝜀(𝑡, 𝑋 𝑠,𝑥𝑡 ), improving surrogate accuracy reduces the variance.
If an algorithm provides a surrogate model with error 𝜀(𝑡, 𝑋 𝑠,𝑥𝑡 ) ∼ 𝑚−𝛾 using 𝑚 collocation points, the
SCaSML simulation achieves a variance of order 𝑚−2𝛾. With an additional 𝑚 random realizations, the
final error is reduced to order

√
𝑚−2𝛾√
𝑚

= 𝑚−
1
2−𝛾. Thus, with 2𝑚 collocation points, SCaSML attains an

accelerated convergence rate of 𝑚−
1
2−𝛾, outperforming both the Monte Carlo algorithm, which converges

at 𝑚−
1
2 , and the original surrogate model, which converges at 𝑚−𝛾.
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Remark 2 (The Reason for Using Monte Carlo in the Debiasing Step). The SCaSML framework
comprises two steps. First, a surrogate model approximates the solution of a partial differential equation
(PDE); then, a rigorous solver refines this surrogate. We use the Monte Carlo algorithm for debiasing
because it effectively manages variance regardless of input regularity .

Learning theory shows that surrogates initially capture smooth function components, leading to
oscillatory, irregular errors. In contrast to other models based on approximation theory—which require
function regularity—the Monte Carlo method does not. Our analysis confirms that the initial estimator
reduces variance, highlighting the synergy and effectiveness of our approach.

2.1. Numerical Experiments

We investigate a linear convection-diffusion equation given by

𝜕

𝜕𝑟
𝑢∞(𝑟, 𝑦) +

〈
−1
𝑑

1,∇𝑦𝑢∞(𝑟, 𝑦)
〉
+ Δ𝑦𝑢

∞(𝑟, 𝑦) = 0, (𝑟, 𝑦) ∈ [0,𝑇) ×R𝑑 , (5)

with terminal condition 𝑢∞(𝑇 , 𝑦) = ∑𝑑
𝑖=1 𝑦𝑖 + 𝑇 , 𝑦 ∈ R𝑑 , which admits the explicit solution

𝑢(𝑟, 𝑦) = ∑𝑑
𝑖=1 𝑦𝑖 + 𝑟. The problem is solved over the hypercube [0, 0.5] × [0, 0.5]𝑑 for dimensions

𝑑 = 10, 20, 30, 60. For each experimental setting, we deploy a Physics-Informed Neural Network
(PINN) consisting of 5 hidden layers, each containing 50 neurons, and using the hyperbolic
tangent (tanh) as the activation function. Training is conducted using the Adam optimizer
with a learning rate of 7 × 10−4 and momentum parameters (0.9, 0.99), over 104 iterations. At
every iteration, the network is trained using 2.5 × 103 interior collocation points along with 102

boundary points. Evaluation is performed on 1000 interior points and 200 boundary points,
uniformly sampled from the same hypercube.

To estimate expectations via the Feynman-Kac formula, we utilize 𝑀𝑛 Monte Carlo samples,
setting 𝑛 = 2, with 𝑀 = 10 for the tabulated results and 𝑀 = 10, . . . , 16 for the inference scaling
study. A clipping threshold of 0.5(𝑑 + 1) is applied to both the solution values and gradients
in each iteration for both the MLP and SCaSML models. In experiments concerning the linear
convection-diffusion scenario (denoted as LCD in Table 1), SCaSML achieves a reduction in
the relative 𝐿2 error ranging from 20% to 56.9% compared to the baseline surrogate model.
Moreover, SCaSML exhibits robust inference scaling, with performance improvements observed
as additional inference time is allocated (see Figure 9).

3. SCaSML for Semilinear Parabolic Equations

In this section, we demonstrate that our methodology extends to the semi-linear parabolic
equation. Remarkably, we establish that the derived Law of defect also takes the form of a
semi-linear parabolic equation, enabling the application of Monte Carlo-based algorithms such
as the Multilevel Picard Iteration (Hutzenthaler et al., 2019) in the formulation.

3.1. Deriving the Law of Defect

To derivate the Law of defect that describing the defect ŭ = u∞ − û, similar to Section 2, we
define the error of the surrogate model �̂� as

𝜀PDE(𝑟, 𝑦) :=
𝜕

𝜕𝑟
�̂� +

〈
𝜇,∇𝑦�̂�

〉
+ 1

2
Tr(𝜎∗Hess 𝑦�̂� 𝜎) + 𝐹(�̂�, 𝜎∗∇𝑦�̂�), and �̂�(𝑦) := �̂�(𝑇 , 𝑦). (6)
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Then the defect �̆� := 𝑢 − �̂� satisfies the following Law of defect, derived from (1)–(6) (see
Figure 1 b)),

Fact 1. The �̆�(𝑟, 𝑦) := 𝑢(𝑟, 𝑦) − �̂�(𝑟, 𝑦) is the solution to the following semi-linear Parabolic equation:
𝜕

𝜕𝑟
�̆� +

〈
𝜇,∇𝑦�̆�

〉
+ 1

2
Tr(𝜎∗Hess 𝑦�̆� 𝜎) + 𝐹(�̆�, 𝜎∗∇𝑦�̆�) = 0, on [0,𝑇) ×R𝑑

�̆�(𝑇 , 𝑦) = �̆�(𝑦), on R𝑑 ,
(7)

where 𝐹(�̆�, 𝜎∗∇𝑦�̆�) = 𝐹(�̂� + �̆�, 𝜎∗(∇𝑦�̂� + ∇𝑦�̆�)) − 𝐹(�̂�, 𝜎∗∇𝑦�̂�) + 𝜀PDE, and �̆�(𝑦) = 𝑔(𝑦) − �̂�(𝑦).

Notably, equation (7) is also a semi-linear parabolic equation, owing to the linearity of the Δ
operator. Consequently, MLP methods can be employed to solve the Law of defect.

3.2. Numerical Experiments

SCaSML consistently delivers the lowest relative 𝐿2 error across all test cases. In particular, for
the viscous Burgers equation, relative error reductions range between 16.2% and 66.1%, while
for the high-dimensional LQG system the reduction spans 11% to 30.8% compared to the best-
performing solver between the surrogate model and the MLP. In addition to achieving superior
𝐿2 performance, SCaSML also attains the lowest 𝐿∞ and 𝐿1 errors in nearly all experiments,
underscoring its robustness across various dimensions and norms in large-scale PDE solving
tasks. Notably, SCaSML is capable of reducing errors within a factor of approximately 2 to 10 in
inference time relative to the surrogate model, facilitated by a parallelized implementation using
JAX(Bradbury et al., 2018) and DeepXDE(Lu et al., 2021), which further illustrates its favorable
inference scaling properties.

For each PDE, we employed a physics-informed neural network with five hidden layers of
50 neurons per layer and hyperbolic tangent activations. In viscous Burgers, the network was
trained using the Adam optimizer with a learning rate of 7 × 10−4, 𝛽1 = 0.9, and 𝛽2 = 0.99 for 104

iterations, utilizing 2,500 interior, 100 boundary, and 160 initial sample points uniformly drawn
from the domain 0 ≤ 𝑡 ≤ 0.5 and −0.5 ≤ 𝑥𝑖 ≤ 0.5 for each spatial dimension. A Gaussian process
regression surrogate was trained over 20 iterations via Newton’s method, using 1,000 interior
and 200 boundary points. For the Hamilton-Jacobi-Bellman equation defined on 0 ≤ 𝑡 ≤ 0.5 and
𝑥 ∈ B𝑑 , the network was trained for 2.5 × 103 iterations with 100 interior and 1,000 boundary
points per iteration at a learning rate of 10−3, 𝛽1 = 0.9, and 𝛽2 = 0.99. The diffusion-reaction
system on 0 ≤ 𝑡 ≤ 0.5 and 𝑥 ∈ B𝑑 required 2.5 × 103 iterations with 1,000 interior and 1,000
boundary points under the same optimization parameters. During evaluation, 1,000 interior and
200 boundary points were uniformly sampled from the corresponding geometry. To expedite
inference, Hutchinson’s method (Girard, 1989; Hutchinson, 1989; Shi et al., 2025) was used to
randomly select 𝑑/4 dimensions for computing Laplacian and divergence operations.
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Figure 2 | Efficiency and performance of SCaSML methodology. a) Violin Plot for Error
distribution of uniformly sampled test points. b) Inference Time Scaling of SCaSML. For each
equation, we demonstrate how SCaSML improves estimation as the number of inference-time
collocation points increases. Our results show that allocating more computational resources
at inference consistently leads to more accurate estimations. c) Comparative performance of
full-history SCaSML against the surrogate model(SR, PINN or Gaussian Process) and MLP
across multiple PDE systems. Reported metrics include total time (s), relative 𝐿2 error, 𝐿∞ error,
and 𝐿1 error.
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Viscous Burgers Equation We consider the viscous Burgers equation from (Hutzenthaler et al.,
2019): 

𝜕

𝜕𝑟
𝑢∞(𝑟, 𝑦) +

〈
−

(
1
𝑑
+
𝜎2

0

2

)
1,∇𝑦𝑢∞(𝑟, 𝑦)

〉
+
𝜎2

0

2
Δ𝑦𝑢

∞(𝑟, 𝑦)

+ 𝜎0 𝑢
∞(𝑟, 𝑦)

𝑑∑︁
𝑖=1

(𝜎0∇𝑦𝑢∞(𝑟, 𝑦))𝑖 = 0, (𝑟, 𝑦) ∈ [0,𝑇) ×R𝑑 ,

𝑢∞(𝑇 , 𝑦) =
exp

(
𝑇 +∑𝑑

𝑖=1 𝑦𝑖

)
1 + exp

(
𝑇 +∑𝑑

𝑖=1 𝑦𝑖

) , 𝑦 ∈ R𝑑 ,

(8)

which possesses the explicit solution 𝑢(𝑟, 𝑦) = exp(𝑟+∑𝑑
𝑖=1 𝑦𝑖)

1+exp(𝑟+∑𝑑
𝑖=1 𝑦𝑖)

. We solve the problem over the

hypercube [0, 0.5] × [−0.5, 0.5]𝑑 for dimensions 𝑑 = 20, 40, 60, 80 with 𝜎0 =
√

2. Both the MLP and
SCaSML frameworks are applied at level 𝑛 = 2. To mitigate the effect of large outliers that could
slow convergence, solutions and gradients are clipped at each level following the thresholding
strategy in (Sebastian Becker et al., 2020); specifically, the clipping threshold is set to 1 for the
MLP and 0.01 for SCaSML. In the experimental analysis of the viscous Burgers equation, denoted
as VB-PINN for using the PINN as surrogate model with 𝑀 = 10 and VB-GP for using the
Gaussian Process as surrogate model with 𝑀 = 3 in Table 1, the SCaSML framework with PINN
exhibits a relative 𝐿2 error reduction ranging from 16.2% to 66.1% compared to the standard
PINN, while the SCaSML framework with the Gaussian Process shows a reduction between
42.7% and 57.5% compared to the baseline Gaussian Process. Moreover, the SCaSML framework
demonstrates advantageous inference scaling properties, characterized by consistently enhanced
performance as more inference time is allotted (refer to Figure 10).

Hamilton-Jacobi-Bellman (HJB) Equation The term “curse of dimensionality” was coined
by Bellman in dynamic programming (Bellman, 1954). In multi-player optimal control prob-
lems, each agent must solve a high-dimensional Hamilton–Jacobi–Bellman (HJB) equation to
determine its optimal strategy, which naturally leads to a high-dimensional PDE for the value
function. Historically, such high-dimensional PDEs have been largely intractable (Han et al.,
2018b). To illustrate the effectiveness of SCaSML debiasing in enhancing neural HJB solvers, we
consider a classical linear-quadratic-Gaussian (LQG) control problem.

In a LQG control, the state dynamics are described by 𝑑𝑋𝑡 = 2
√
Γ 𝑋𝑡 𝑑𝑡 +

√
2 𝑑𝑊𝑡 with 𝑋0 = 𝑥,

and the associated cost functional is given by 𝐽
(
{𝑚𝑡}𝑡∈[0,𝑇 ]

)
= E

[∫ 𝑇

0 ∥𝑚𝑡∥2 𝑑𝑡 + 𝑔(𝑋𝑇 )
]

, where
{𝑋𝑡}𝑡∈[0,𝑇 ] is the state process, {𝑚𝑡}𝑡∈[0,𝑇 ] the control process, 𝜆 a positive constant quantifying
control cost, and {𝑊𝑡}𝑡∈[0,𝑇 ] is a standard Brownian motion. The objective is to minimize 𝐽 by
choosing an optimal control. The corresponding HJB equation (Yong and Zhou, 1999, Chapter 4)
reads

𝜕𝑢

𝜕𝑟
(𝑡, 𝑥) + Δ𝑦𝑢(𝑡, 𝑥) − 𝜆 ∥∇𝑦𝑢(𝑡, 𝑥)∥2 = 0. (9)

The solution 𝑢(𝑡, 𝑥) evaluated at 𝑡 = 0 represents the optimal cost when starting from state 𝑥.
By applying Itô’s formula, one can verify that the exact solution of (9) with terminal condition

𝑢(𝑇 , 𝑥) = 𝑔(𝑥) is given explicitly by 𝑢(𝑡, 𝑥) = − 1
𝜆

log
(
E

[
exp

(
−𝜆 𝑔(𝑋𝑇 )

) ] )
, where 𝑋𝑇 evolves accord-

ing to the specified dynamics. Following (Hu et al., 2024), we study the case where the terminal

condition is given by 𝑢∞(𝑇 , 𝑦) = log
(

1+∑𝑑−1
𝑖=1 [𝑐1,𝑖 (𝑦𝑖−𝑦𝑖+1 )2+𝑐2,𝑖 𝑦

2
𝑖+1]

2

)
, with the coefficients 𝑐1,𝑖 and 𝑐2,𝑖

obtained as independent random draws from the uniform distribution on the interval [0.5, 1.5].
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To mitigate the impact of large outliers that may slow convergence, we apply a clipping
procedure at each level (Sebastian Becker et al., 2020), using a threshold of 10 for the MLP and
0.1 for SCaSML. In experiments with the HJB equation (denoted as LQG in Table 1), SCaSML
achieves a reduction in the relative 𝐿2 error ranging from 11.7% to 30.8% compared to the baseline
surrogate model. Additionally, SCaSML exhibits favorable inference scaling behavior, with
performance consistently improving as additional inference time is allocated (see Figure 11).

Diffusion Reaction Equation Given 𝑢★(𝑟, 𝑦) = 1.6 + sin
(
0.1

∑𝑑
𝑖=1 𝑦𝑖

)
exp

(
0.01𝑑 (𝑟−1)

2

)
. Following

(Han et al., 2018b), we consider a diffusion-reaction equation as in (Gobet and Turkedjiev, 2017):
𝜕

𝜕𝑟
𝑢∞(𝑟, 𝑦) + 1

2
Δ𝑦𝑢

∞(𝑟, 𝑦) +min{1, (𝑢∞(𝑟, 𝑦) − 𝑢★(𝑟, 𝑦))2} = 0, (𝑟, 𝑦) ∈ [0, 1) ×R𝑑 ,

𝑢∞(1, 𝑦) = 1.6 + sin
(
0.1

𝑑∑︁
𝑖=1

𝑦𝑖

)
, 𝑦 ∈ R𝑑 ,

(10)

which admits the explicit oscillating solution 𝑢∞(𝑟, 𝑦) = 1.6 + sin
(
0.1

∑𝑑
𝑖=1 𝑦𝑖

)
exp

(
0.01𝑑 (𝑟−1)

2

)
. We

evaluate the problem for dimensions 𝑑 = 100, 120, 140, 160.

To mitigate the impact of outliers that could impede convergence, we apply clipping at each
level, using a threshold of 10 for the MLP and 0.01 for SCaSML. Due to significant fluctuations
in the scaling curve, a Hutchinson-type estimator was not employed in this experiment. In
our experiments with the diffusion-reaction equation (denoted as DR in Table 1), the SCaSML
framework achieves a relative 𝐿2 error reduction ranging from 6.6% to 10.9% compared to the
baseline surrogate model. Furthermore, SCaSML demonstrates robust inference scaling, with
performance consistently improving as additional inference time is allocated (see Figure 12).

4. Provable Improved Convergence Rate of Simulation-Calibrated Scientific
Machine Learning

In this section, we present theoretical guarantees of accuracy and show an improved convergence
rate for SCaSML methodologies. For simplicity, we assume 𝜇 = 0𝑑+1 and 𝜎 = 𝑠I𝑑 (𝑠 ∈ R) to present
the theoretical results and consider the full-history approximation scheme as an example. We can
establish a similar theoretical result for SCaSML using quadrature MLP. The detailed theoretical
proof can be found in Appendix E.

Assumptions on Surrogate Model Like in language models, where only the powerful enough
base models can show an inference time scaling curve, we assume that the error of our learned
surrogate model, �̂�, is limited by an error measure 𝑒(�̂�).

Assumption 1 (Accuracy of the Surrogate Model). Let sup𝑡∈[0,𝑇 ] ∥�̆�∞(𝑡, ·)∥𝑊1,∞ < ∞. There exist
constants 𝐶𝐹,1,𝐶𝐹,2 > 0 such that:
1. 𝐿∞ Residual Bound: sup𝑟∈[0,𝑇 ],𝑦∈R𝑑 |𝜀PDE(𝑟, 𝑦) | ⩽ 𝐶𝐹,1 𝑒(�̂�),
2. 𝑊1,∞ Error Bound: sup𝑟∈[0,𝑇 ] ∥�̆�(𝑟, ·)∥𝑊1,∞ ⩽ 𝐶𝐹,2 𝑒(�̂�).

Main Theorems and Proof Idea Our main result establishes that the global 𝐿2 error of the
SCaSML estimator is bounded by the product of the surrogate error measure 𝑒(�̂�) and the error
bound associated with the MLP. Our analysis relies on the fact that the overall 𝐿2 error of MLP is
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Figure 3 | Improved Scaling Law for SCaSML. a) Our SCaSML method stochastically simulates
the residual error along the Feynman path, making the simulation difficulty directly proportional
to the surrogate model’s residual error. This process results in a product defined by the surrogate
error measure and the MLP error bound as stated in Theorem 2. Furthermore, by allocating
equal amounts of data for both training and inference, SCaSML achieves the improved scaling
law detailed in Corollary 4. b) By simultaneously increasing the collocation points for both
testing and inference, we numerically demonstrate that SCaSML exhibits a faster scaling law
than the base surrogate model. Both axes are log scale for all the plots, and the slope 𝛾 denotes
the polynomial convergence rate. Detailed experiment setting is shown in Appendix G.3.

mainly characterized by the Lipschitz continuity of the terminal condition and the magnitude
of nonlinearity. Our main observation is that these complexity characterization of the Law of
defect term can be bounded by the surrogate error, implying that the Law of defect is easier
to simulate using MLP methods. In Corollary 7, the surrogate error is highlighted in teal and
the MLP error in gray. In essence, a highly accurate surrogate (that is, with small 𝑒(�̂�)) leads to
a proportional reduction in the overall error and, in turn, lower computational complexity to
achieve the same precision. Due to page limit, we left the full derivation to Sections E.2.1 and
F.2.1.

Theorem 2 (Bound of Global 𝐿2 Error). Under Assumptions 1, 2, 5 and 6, suppose 𝑝 ⩾ 2, 𝛼 ∈
( 𝑝−2

2(𝑝−1) ,
𝑝

2(𝑝−1) ), 𝑡 ∈ [0,𝑇), 𝑥 ∈ R𝑑 , 𝛽 = 𝛼
2 −

(1−𝛼) (𝑝−2)
2𝑝 . It holds that

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}




(Ŭ𝑁,𝑀 (𝑡, 𝑥) − ŭ(𝑡, 𝑥)
)
𝜈





𝐿2
≤ 𝐸(𝑀, 𝑁) ·

(
𝐶𝐹 𝑒(�̂�)

)
, (11)

where 𝐸(𝑀, 𝑁) =

[
𝑒

(
𝑝𝑁

2 +1
)] 1

8
(2𝐶)𝑁−1 exp

(
𝛽𝑀

1
2𝛽

)
√
𝑀𝑁−1

. Here, ŭ(𝑡, 𝑥) = (�̆�, 𝜎∇𝑥 �̆�) is the exact defect we want to

estimate and Ŭ𝑁,𝑀 (𝑡, 𝑥) is the estimation using full-history MLP with 𝑁 levels in total and 𝑀 𝑙 samples
at each level 1 ⩽ 𝑙 ⩽ 𝑁.
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Remark 3. Our error bound demonstrates that the full-history SCaSML error satisfies ErrorSCaSML ⩽
𝜀(�̂�) · 𝜀MLP, where 𝜀(�̂�) is the error measure for surrogate model �̂� and 𝜀MLP denotes the error bound
associated with the naïve full-history MLP method. Consequently, the SCaSML approach preserves
the linear dependency on 𝑑 in computational complexity, just as the original MLP framework does. By
leveraging a sufficiently accurate base surrogate model, the computational complexity to achieve a global
𝐿2 error of 𝜀 reduces from 𝑂

(
𝑑 𝜀−(2+𝛿)

)
to 𝑂

(
𝑑 𝜀−(2+𝛿) 𝑒(�̂�)2+𝛿

)
, as shown in Corollary 7. For further

technical details, please refer to sections E.2.2 and F.2.2.

Leveraging the established error bound and optimally partitioning the 𝑚 collocation points
between training and inference, we derive in Corollary 4 that the SCaSML method satisfies

𝑂
(
𝑚
−𝛾− 1

2 poly(𝑑)
)
, compared to the base surrogate model’s scaling 𝑒(�̂�𝑚) = 𝑂

(
𝑚−𝛾 poly(𝑑)

)
,

where �̂�𝑚 denotes the surrogate model trained on 𝑚 collocation points.

Corollary 4 (Provable Improved Scaling Law for SCaSML). Under Assumptions 1, 2, 5 and 6 ,
suppose that 𝑝 ⩾ 2, 𝛼 ∈

(
𝑝−2

2(𝑝−1) ,
𝑝

2(𝑝−1)

)
, 𝑡 ∈ [0,𝑇), 𝑥 ∈ R𝑑 , and define 𝛽 = 𝛼

2 −
(1−𝛼) (𝑝−2)

2𝑝 . Assume
that the error at (𝑡, 𝑥) of the surrogate model decays polynomially with respect to the number of training
points; namely, 𝑒(�̂�) = 𝑂(𝑚−𝛾), for some 𝛾 > 0. If we set 𝑚 = (𝑑 + 1)5𝑁 𝑁2𝛽𝑁 , for all sufficiently large 𝑚,
the SCaSML procedure improves the error bound from 𝑂(𝑚−𝛾) to 𝑂

(
𝑚−𝛾−

1
2+𝑜(1)

)
when using the same

number of collocation points.

5. Conclusion

In this work, we have demonstrated that integrating simulation-based error correction at infer-
ence time can significantly enhance the accuracy of machine-learned PDE solvers. Specifically,
the SCaSML framework leverages a novel Law of defect to quantify and correct the error
of a surrogate model by solving an auxiliary PDE. By simulating error propagation along the
Feynman path using techniques based on the Feynman-Kac and Elworthy-Bismut-Li formulas,
SCaSML not only reduces the inherent bias of the surrogate but also markedly improves its
convergence rate. Numerical experiments confirm that this inference-time correction yields
substantial error reductions (ranging from 10% to 80% depending on the method), offering
a scalable and theoretically grounded approach to mitigating the curse of dimensionality in
high-dimensional PDE problems.
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Table 1 | Comparative performance of full-history SCaSML against the surrogate model(SR,
PINN or Gaussian Process) and MLP across multiple PDE systems. Reported metrics include
total time (s), relative 𝐿2 error, 𝐿∞ error, and 𝐿1 error. Bold values indicate the best performance.

Time (s) Relative 𝐿2 Error 𝐿∞ Error 𝐿1 Error
SR MLP SCaSML SR MLP SCaSML SR MLP SCaSML SR MLP SCaSML

LC
D

10d 2.64 11.24 23.75 5.24E-02 2.27E-01 2.73E-02 2.50E-01 9.06E-01 1.61E-01 3.43E-02 1.67E-01 1.78E-02
20d 1.14 7.35 17.59 9.09E-02 2.35E-01 4.73E-02 4.52E-01 1.35E+00 3.28E-01 9.47E-02 2.37E-01 4.52E-02
30d 1.39 7.52 25.33 2.30E-01 2.38E-01 1.84E-01 4.73E+00 1.59E+00 1.49E+00 1.75E-01 2.84E-01 1.91E-01

60d 1.13 7.76 35.58 3.07E-01 2.39E-01 1.32E-01 3.23E+00 2.05E+00 1.55E+00 5.24E-01 4.07E-01 2.06E-01

V
B

-P
IN

N 20d 1.15 7.05 13.82 1.17E-02 8.36E-02 3.97E-03 3.16E-02 2.96E-01 2.16E-02 5.37E-03 3.39E-02 1.29E-03
40d 1.18 7.49 16.48 3.99E-02 1.04E-01 2.85E-02 8.16E-02 3.57E-01 7.16E-02 1.97E-02 4.36E-02 1.21E-02
60d 1.19 7.57 19.83 3.97E-02 1.17E-01 2.90E-02 8.10E-02 3.93E-01 7.10E-02 1.95E-02 4.82E-02 1.24E-02
80d 1.32 7.48 21.99 6.78E-02 1.19E-01 5.68E-02 1.89E-01 3.35E-01 1.79E-01 3.24E-02 4.73E-02 2.49E-02

V
B

-G
P

20d 1.67 11.08 63.38 1.46E-01 1.90E-01 6.23E-02 3.54E-01 5.72E-01 2.54E-01 7.01E-02 8.00E-02 2.48E-02
40d 1.58 10.91 55.92 1.81E-01 2.20E-01 8.57E-02 4.01E-01 8.71E-01 3.01E-01 9.19E-02 9.06E-02 3.82E-02
60d 1.59 10.33 56.63 2.40E-01 2.57E-01 1.28E-01 3.83E-01 9.50E-01 2.83E-01 1.27E-01 9.99E-02 6.11E-02
80d 1.61 10.69 58.53 2.66E-01 3.02E-01 1.52E-01 3.61E-01 1.91E+00 2.61E-01 1.45E-01 1.09E-01 7.59E-02

LQ
G

100d 1.54 8.67 26.95 7.96E-02 5.63E+00 5.51E-02 7.78E-01 1.26E+01 6.78E-01 1.40E-01 1.21E+01 8.68E-02
120d 1.25 8.17 27.46 9.37E-02 5.50E+00 6.64E-02 9.02E-01 1.27E+01 8.02E-01 1.73E-01 1.22E+01 1.05E-01
140d 1.80 8.27 29.72 9.79E-02 5.37E+00 6.78E-02 1.00E+00 1.27E+01 9.00E-01 1.91E-01 1.23E+01 1.11E-01
160d 1.74 9.07 32.08 1.11E-01 5.27E+00 9.92E-02 1.38E+00 1.28E+01 1.28E+00 2.15E-01 1.23E+01 1.79E-01

D
R

100d 1.62 7.75 60.86 9.52E-03 8.99E-02 8.87E-03 7.51E-02 6.37E-01 6.51E-02 1.13E-02 9.74E-02 1.11E-02
120d 1.26 7.28 65.66 1.11E-02 9.13E-02 9.90E-03 7.10E-02 5.74E-01 6.10E-02 1.40E-02 9.97E-02 1.23E-02
140d 2.38 7.82 76.90 3.17E-02 8.97E-02 2.94E-02 1.79E-01 8.56E-01 1.69E-01 3.96E-02 9.77E-02 3.67E-02
160d 1.75 7.42 82.40 3.46E-02 9.00E-02 3.23E-02 2.08E-01 8.02E-01 1.98E-01 4.32E-02 9.75E-02 4.02E-02
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A. Outline of the Appendix

Appendix B. Preliminaries. This section introduces two essential components of our experiments: the
surrogate models in SCaSML and the Multilevel Picard (MLP) iterations.

1. Surrogate Models for PDEs. We present the preliminary on the surrogate models we
used for solving partial differential equations.

(a) Physics-Informed Neural Network (PINN). Details on training physics-informed
neural networks as base surrogate models.

(b) Gaussian Processes. (Chen et al., 2021; Yang et al., 2021) approximate the solution
to a given PDE by computing the maximum a posteriori (MAP) estimator of a
Gaussian process that is conditioned to satisfy the PDE at a limited number of col-
location points. While this formulation naturally leads to an infinite-dimensional
optimization problem, it can be transformed into a finite-dimensional one by
introducing auxiliary variables that represent the values of the solution’s deriva-
tives at these collocation points—a strategy that extends the representer theorem
familiar from Gaussian process regression. The resulting finite-dimensional prob-
lem features a quadratic objective function subject to nonlinear constraints and is
solved using a variant of the Gauss–Newton method.

2. Quadrature and full-history Multilevel Picard Iterations. In this section, we provide
an overview of the Mutlilevel Picard Iteration (MLP) methods for solving semi-linear
Parabolic equation is provided, including two variants:quadrature MLP(E et al., 2021)
and full-history MLP(Hutzenthaler et al., 2021).

Appendix C. Algorithm. In this section, we present the full procedure of SCaSML algorithms.
Appendix D. Proof Settings. This section details the common assumptions and notation for all MLP

methods, and presents regularity conditions on surrogate models.

1. Notation. We adopt the notation system introduced in (Hutzenthaler et al., 2021).

2. Regularity Assumptions for Surrogate Model. We introduce regularity conditions on
surrogate models.

Appendix E. Proof for Quadrature Multilevel Picard Iteration. In this section, we establish the conver-
gence rate improvement for SCaSML using quadrature integration.

1. Settings. SCaSML needs a good base surrogate model. In this section, we specify the
accuracy assumptions for the base surrogate model.

2. Main Results. The primary theoretical results include:

(a) Global 𝐿2 Error Bound. The error analysis employs a factor replacement strategy,
with the flexibility of choosing the inference time computation cost 𝑀.

(b) Computational Complexity Bound. By setting optimal relationship between
training and inference time computational cost, we show that SCaSML can reduce
the computational complexity from 𝑂(𝑑𝜀−(4+𝛿) ) to 𝑂(𝑑𝑒(�̂�)4+𝛿𝜀−(4+𝛿) ).

Appendix F. Proof for full-history Multilevel Picard Iteration. This section mirrors the previous one
but focuses on the full-history variant.

1. Settings. SCaSML needs a good base surrogate model. In this section, we specify the
accuracy assumptions for the base surrogate model.

2. Main Results. The key theoretical findings are:

(a) Global 𝐿2 Error Bound. The error analysis employs a factor replacement strategy,
with the flexibility of choosing the inference time computation cost 𝑀.
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(b) Computational Complexity Bound. By setting optimal relationship between
training and inference time computational cost, we show that SCaSML can reduce
the computational complexity from 𝑂(𝑑𝜀−(2+𝛿) ) (MLP) to 𝑂(𝑑𝑒(�̂�)2+𝛿𝜀−(2+𝛿) ). We
also show a improved scaling law for SCaSML.

Appendix G. Auxiliary Experimental Results. This section compiles supplementary experimental data
that support our theoretical claims, including violin plots of the absolute error distributions
and inference time scaling law curves illustrating the improved convergence rate.

B. Preliminary

B.1. Surrogate Models for PDEs

In our experiments, we employ two surrogate models to solve high-dimensional PDEs:a Physics-
Informed Neural Network (PINN) and a Gaussian Process (GP) regression model. Both models
are implemented in JAX (Bradbury et al., 2018) and DeepXDE (Lu et al., 2021) to leverage efficient
parallelization and runtime performance. Furthermore, Hutchinson’s estimator technique 3
as delineated in (Shi et al., 2025) is incorporated during the training process to substantially
decrease GPU memory consumption, applicable to both the training and inference stages of
Physics-Informed Neural Networks (PINN), as well as the inference phase of Gaussian Processes.

B.1.1. Physics-Informed Neural Network (PINN)

Physics-Informed Neural Networks (PINNs) are designed to approximate solutions of PDEs by
embedding physical laws into the learning process. In our framework, the neural network �̂�(𝑡, 𝑥)
with parameters 𝜃 approximates the true solution 𝑢∞(𝑡, 𝑥) of the given PDE. The training loss is
constructed as a weighted sum of several components, each designed to enforce key aspects of
the problem’s constraints.

The first component is the PDE loss, which ensures that the network output adheres to the
governing differential equation. This is achieved by penalizing deviations from the expected
behavior defined by the differential operator, evaluated at a set of interior collocation points
{(𝑡𝑘, 𝑥𝑘)}𝑆1

𝑘=1. The PDE loss is defined as

LPDE(𝜃) =
1
𝑆1

𝑆1∑︁
𝑘=1

���𝜕�̂�
𝜕𝑟
(𝑡𝑘, 𝑥𝑘) +

𝜎2

2
Δ𝑦�̂�(𝑡𝑘, 𝑥𝑘) + 𝐹

(
�̂�, 𝜎∇𝑦�̂�

)
(𝑡𝑘, 𝑥𝑘)

���2. (12)

In order to satisfy the prescribed boundary conditions, the model employs a Dirichlet
boundary loss. This term minimizes the difference between the network output and the given
boundary values ℎ(𝑥𝑘) at selected boundary points {(𝑡𝑘, 𝑥𝑘)}𝑆2

𝑘=1, and is expressed as

LDir(𝜃) =
1
𝑆2

𝑆2∑︁
𝑘=1

|�̂�(𝑡𝑘, 𝑥𝑘) − ℎ(𝑥𝑘) |2 . (13)

Moreover, the initial conditions of the problem are enforced by an initial loss component.
This ensures that the solution at time 𝑡 = 0 matches the known initial data 𝑞(𝑥𝑘) for the points
{(0, 𝑥𝑘)}𝑆3

𝑘=1:

Linitial(𝜃) =
1
𝑆3

𝑆3∑︁
𝑘=1

|�̂�(0, 𝑥𝑘) − 𝑞(𝑥𝑘) |2 . (14)

20



The overall training objective is then formulated as a combination of these losses, with each
term scaled by its corresponding weighting coefficient:

L(𝜃) = 𝛼1 LPDE(𝜃) + 𝛼2 LDir(𝜃) + 𝛼3 Linitial(𝜃). (15)

This formulation ensures that the PINN not only fits the observed data but also rigorously
respects the underlying physical laws, boundary conditions, and initial conditions governing
the PDE.

B.1.2. Gaussian Processes

In this section, we review the Gaussian Process (GP) framework developed in (Chen et al., 2021,
2024; Yang et al., 2021) to solve nonlinear PDEs. Consider solving a semi-linear parabolic PDE

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) = 𝜏

(
𝑢(𝑡, 𝑥), Δ𝑥𝑢(𝑡, 𝑥), div𝑥 𝑢(𝑡, 𝑥)

)
, ∀(𝑡, 𝑥) ∈ [0,𝑇] ×R𝑑 ,

𝑢(𝑇 , 𝑥) = 𝑔(𝑥), ∀𝑥 ∈ R𝑑 ,
(16)

where 𝜏 is a nonlinear function of the solution and its derivatives, and 𝑔 specifies the terminal
condition.

The GP Framework Consider one already sample 𝑀in interior points and 𝑀bd boundary
points, denoted as xin = {x1

in, ..., x𝑀in
in } ⊂ [0,𝑇] ×R𝑑 and xbd = {x1

bd, ..., x𝑀bd
bd } ⊂ {𝑇} ×R𝑑 . Then, we

assign an unknown GP prior to the unknown function 𝑢 with mean 0 and covariance function
𝐾 : ( [0,𝑇] ×R𝑑) × ([0,𝑇] ×R𝑑) → R, the method aims to compute the maximum a posterior
estimator of the GP given the sampled PDE data, which leads to the following optimization
problem 

minimize
𝑢∈U

∥𝑢∥
s.t. 𝜕𝑢

𝜕𝑡
(x𝑚in) = 𝜏(𝑢(x𝑚in), Δ𝑥𝑢(x

𝑚
in), div𝑥 𝑢(x𝑚in)), for 𝑚 = 1, . . . , 𝑀in,

𝑢(x𝑚bd) = 𝑔(x𝑚bd), for 𝑚 = 1, . . . , 𝑀bd.
(17)

Here, ∥ · ∥ is the Reproducing Kernel Hilbert Space(RKHS) norm corresponding to the ker-
nel/covariance function 𝐾. Regarding consistency, once 𝐾 is sufficiently regular, the above
solution will converge to the exact solution of the PDE when 𝑀in,𝑀bd → ∞; see (Batlle et al.,
2023, Theorem 1.2).

We denote the measurement functions by

𝜑1
𝑚 (𝑢) : 𝑢→ 𝛿x𝑚in ◦ 𝑢, 1 ⩽ 𝑚 ⩽ 𝑀in, 𝜑2

𝑚 (𝑢) : 𝑢→ 𝛿x𝑚bd
◦ 𝑢, 1 ⩽ 𝑚 ⩽ 𝑀bd,

𝜑3
𝑚 (𝑢) : 𝑢→ 𝛿x𝑚in ◦ Δ𝑥𝑢, 1 ⩽ 𝑚 ⩽ 𝑀in, 𝜑4

𝑚 (𝑢) : 𝑢→ 𝛿x𝑚in ◦
𝜕𝑢

𝜕𝑡
, 1 ⩽ 𝑚 ⩽ 𝑀in,

𝜑5
𝑚 (𝑢) : 𝑢→ 𝛿x𝑚in ◦ div𝑥 𝑢, 1 ⩽ 𝑚 ⩽ 𝑀in,

(18)

where 𝛿x is the Dirac delta function centered at x. These functions belong toU∗, the dual space of
U, for sufficiently regular kernel functions. We further use the shorthand notation 𝜑1,𝜑3,𝜑4,𝜑5

for 𝑀in dimensional vectors and 𝜑2 for 𝑀bd dimensional vectors as finite dimensional repre-
sentation for corresponding features. We use [·, ·] to denote the primal-dual pairing, such that
for 𝑢 ∈ U and 𝜑𝑖

𝑚 ∈ U∗,∀𝑖 it holds that [𝑢,𝜑𝑖
𝑚] =

∫
𝑢(x)𝜑𝑖

𝑚 (x)𝑑x. For instance, for 𝜑3
𝑚 we have
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[𝑢,𝜑3
𝑚] =

∫
𝑢(x)𝜑3

𝑚 (x)𝑑x = 𝜕𝑢
𝜕𝑡
(x𝑚). Based on the defined notation, we can rewrite the MAP

problem (17) as

minimize
𝑢∈U

∥𝑢∥

s.t. 𝑧
(1)
𝑚 = 𝜑

(1)
𝑚 (𝑢), 𝑧 (3)𝑚 = 𝜑

(3)
𝑚 (𝑢), 𝑧 (4)𝑚 = 𝜑

(4)
𝑚 (𝑢), 𝑧 (5)𝑚 = 𝜑

(5)
𝑚 (𝑢), 𝑚 = 1, . . . , 𝑀in,

𝑧
(1)
𝑚 = 𝜑

(1)
𝑚 (𝑢),𝑚 = 1, . . . , 𝑀bd,

𝑧
(4)
𝑚 = 𝜏(𝑧 (1)𝑚 , 𝑧 (3)𝑚 , 𝑧 (5)𝑚 ), 𝑚 = 1, . . . , 𝑀in,
𝑧
(2)
𝑚 = 𝑔(x𝑚

𝑏𝑑
), 𝑚 = 1, . . . , 𝑀bd.

(19)

Finite Dimensioanl Representation via Representer Theorem According to Representer
Theorem (Chen et al., 2021; Unser, 2021) show that although the original MAP problem (17) is an
infinite-dimensional optimization problem, the minimizer enjoys a finite-dimensional structure

𝑢†(x) = 𝐾 (x,𝜑)𝛼 (20)

where 𝐾 (x,𝜑) is the (4𝑀in + 𝑀bd) dimensional vector with entries
∫
𝐾 (x, x′)𝜑 𝑗 (x′)𝑑x′ (here the

integral notation shall be interpreted as the primal-dual pairing as above), i.e.

𝐾 (x,𝜑) =
[
𝐾 (x, xin) 𝐾 (x, xbd) Δ𝑥′𝐾 (x, xin) 𝜕

𝜕𝑡
𝐾 (x, xin) div𝑥′ 𝐾 (x, xin)

]
∈ R1×(4𝑀in+𝑀bd ) ,

(21)
and 𝛼 ∈ R4𝑀in+𝑀bd is the unknown coeficients. Based on the finite dimensional representation
(20), we know [

𝑧 (1)
⊤

, 𝑧 (2)
⊤

, 𝑧 (3)
⊤

, 𝑧 (4)
⊤

, 𝑧 (5)
⊤]⊤

= 𝐾 (𝜑,𝜑)𝛼, (22)

where 𝑧 (1) = [𝜑1
1(𝑢),𝜑

1
2(𝑢), · · · ,𝜑1

𝑀in
(𝑢)]⊤ ∈ R𝑀in , 𝑧 (2) = [𝜑2

1(𝑢),𝜑
2
2(𝑢), · · · ,𝜑2

𝑀bd
(𝑢)]⊤ ∈ R𝑀bd , 𝑧 (3) =

[𝜑3
1(𝑢),𝜑

3
2(𝑢), · · · ,𝜑3

𝑀in
(𝑢)]⊤ ∈ R𝑀in , 𝑧 (4) = [𝜑4

1(𝑢),𝜑
4
2(𝑢), · · · ,𝜑4

𝑀in
(𝑢)]⊤ ∈ R𝑀in , 𝑧 (5) = [𝜑5

1(𝑢), · · · ,𝜑5
𝑀in
(𝑢)]⊤ ∈

R𝑀in , and 𝐾 (𝜑,𝜑) is the kernel matrix as the (4𝑀in + 𝑀bd) × (4𝑀in + 𝑀bd) matrix with entries∫
𝐾 (x, x′)𝜑𝑚 (x)𝜑 𝑗 (x′)𝑑x𝑑x′ where 𝜑𝑚 denotes the entries of 𝜑. Precisely 𝐾 (𝜑,𝜑) can be written

down explicitly as:

𝐾 (𝜑,𝜑) =


𝐾 (xin, x′in) 𝐾 (xin, x′bd) Δ𝑥′𝐾 (xin, x′in)

𝜕
𝜕𝑡
𝐾 (xin, x′in) div𝑥′ 𝐾 (xin, x′in)

𝐾 (xbd, x′in) 𝐾 (xbd, x′bd) Δ𝑥′𝐾 (xbd, x′in)
𝜕
𝜕𝑡
𝐾 (xbd, x′bd) div𝑥′ 𝐾 (xbd, x′in)

Δ𝑥𝐾 (xin, x′in) Δ𝑥𝐾 (xin, x′bd) Δ𝑥Δ𝑥′𝐾 (xin, x′in) Δ𝑥
𝜕
𝜕𝑡
𝐾 (xin, x′in) Δ𝑥 div𝑥′ 𝐾 (xin, x′in)

𝜕
𝜕𝑡
𝐾 (xin, x′in)

𝜕
𝜕𝑡
𝐾 (xin, x′bd)

𝜕
𝜕𝑡
Δ𝑥′𝐾 (xin, x′in)

𝜕
𝜕𝑡

𝜕
𝜕𝑡
𝐾 (xin, x′in)

𝜕
𝜕𝑡

div𝑥′ 𝐾 (xin, x′in)
div𝑥 𝐾 (xin, x′in) div𝑥 𝐾 (xin, x′bd) div𝑥 Δ𝑥′𝐾 (xin, x′in) div𝑥 𝜕

𝜕𝑡
𝐾 (xin, x′in) div𝑥 div𝑥′ 𝐾 (xin, x′in)


,

(23)
Here we adopt the convention that if the variable inside a function is a set, it means that this
function is applied to every element in this set; the output will be a vector or a matrix, e.g.

𝐾 (xin, x′in) = exp
(
− ∥x

𝑚
in−x 𝑗in ∥

2
2

2(𝜎
√
𝑑)2

)
, 1 ⩽ 𝑚, 𝑗 ⩽ 𝑀in, ∈ R𝑀in×𝑀in in the Gaussian kernel of our numerical

experiment, where 𝜎 is the variance of the equation. Thus the finite dimensional representation
(20) can be rewritten in terms of the function (derative) values

𝑢†(x) = 𝐾 (x,𝜑)𝐾 (𝜑,𝜑)−1𝑧†, (24)

where 𝑧† =
[
𝑧 (1)

⊤, 𝑧 (2)⊤, 𝑧 (3)⊤, 𝑧 (4)⊤, 𝑧 (5)⊤
]⊤
∈ R4𝑀in+𝑀bd .
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Plug the finite-dimensional representation (24) to the original MAP problem (19) we have
that 𝑧† is the solution to the following finite-dimensional quadratic optimization optimization
problem with nonlinear constraints

min
𝑧∈R4𝑀in+𝑀bd

𝑧⊤𝐾 (𝜑,𝜑)−1𝑧

subject to

𝑧
(4)
𝑚 = 𝜏(𝑧 (1)𝑚 , 𝑧 (3)𝑚 , 𝑧 (5)𝑚 ), 𝑚 = 1, . . . , 𝑀in,

𝑧
(2)
𝑚 = 𝑔(x𝑚𝑏𝑑), 𝑚 = 1, . . . , 𝑀bd.

(25)

Solving the Optimization Formulation To develop efficient optimization algorithms for (25),
observing that the constraints 𝑧 (4)𝑚 = 𝜏

(
𝑧
(1)
𝑚 , 𝑧 (3)𝑚 , 𝑧 (5)𝑚

)
and 𝑧

(2)
𝑚 = 𝑔

(
x𝑚
𝑏𝑑

)
express 𝑧 (4)𝑚 and 𝑧

(2)
𝑚 in

terms of the other variables, (Chen et al., 2021, 2024) reformulate the optimization problem as an
unconstrained problem

min
𝑧 (1) , 𝑧 (3) , 𝑧 (5) ∈R𝑀in

[𝑧 (1) ; 𝑔(x𝑏𝑑); 𝑧 (3) ; 𝜏(𝑧 (1) , 𝑧 (3) , 𝑧 (5) ); 𝑧 (5) ]⊤𝐾 (𝜑,𝜑)−1 [𝑧 (1) ; 𝑔(x𝑏𝑑); 𝑧 (3) ; 𝜏(𝑧 (1) , 𝑧 (3) , 𝑧 (5) ); 𝑧 (5) ].

We apply Sparse Cholesky decomposition to the positive-definite (𝐾 (𝜑,𝜑) + 𝜂𝐼) as 𝐿𝐿𝑇 . In turn,
𝑏𝑇 (𝐾 (𝜑,𝜑) + 𝜂𝐼)−1𝑏 = 𝑏𝑇 (𝐿𝐿𝑇 )−1𝑏 = (𝐿−1𝑏)𝑇 (𝐿−1𝑏) = ∥𝐿−1𝑏∥22. Hence, the loss function is defined
as J (𝑧 (1) , 𝑧 (3) , 𝑧 (5) ) = ∥𝐿−1𝑏∥2. Optimization is carried out via a Newton method in 20 iterations.
We initialize 𝑧 (1) , 𝑧 (3) , 𝑧 (5) ∈ R𝑀in following 𝑁 (0, 10−6𝐼𝑀in). In each iteration, the gradient ∇J
and Hessian ∇2J are computed via automatic differentiation, and the Newton direction Δ𝑧
is obtained by solving

(
∇2J + 𝜆𝐼

)
Δ𝑧 = −∇J , where 𝜆 = 10−4 is an regularization parameter.

Then, update J at Newton direction with step size 𝛼 = 1. Early stopping is triggered when the
gradient norm falls below 10−5. Finally, to apply the representer theorem in 24, the algorithm
solves the linear system (𝐾 (𝜑,𝜑) + 𝜂𝐼)𝑤† = 𝑧† to obtain the weight vector 𝑤† and the final PDE
solution is given as 𝑢†(x) = 𝐾 (x,𝜑)𝑤†.

B.2. Quadrature Multilevel Picard Iterations and full-history Multilevel Picard Iterations

Multilevel Picard Iteration (MLP) method (Hutzenthaler et al., 2019) is a simulation-based solver
which solves a semilinear parabolic PDEs (Han et al., 2018a; Hutzenthaler et al., 2019; Weinan
et al., 2021), represented as the following.

𝜕

𝜕𝑟
𝑢∞ +

〈
𝜇,∇𝑦𝑢∞

〉
+ 1

2
Tr(𝜎∗Hess 𝑢∞ 𝜎) + 𝐹(𝑢∞, 𝜎∗∇𝑦𝑢∞) = 0, on [0,𝑇) ×R𝑑

𝑢∞(𝑇 , 𝑦) = 𝑔(𝑦), on R𝑑 .
(26)

where 𝑇 > 0, 𝑑 ∈ N, 𝑔 : R𝑑 → R, 𝑢∞ : [0,𝑇] ×R𝑑+1 → R, 𝜇 : [0,𝑇] ×R𝑑 → R
𝑑 . Additionally, let 𝜎

be a regular function mapping [0,𝑇] ×R𝑑 to a real 𝑑 × 𝑑 invertible matrix.

The MLP method reformulates the PDE into a fixed-point problem using the Feynman–Kac
formula to represent the solution as the expected value of a stochastic process’s functional. A
Picard scheme iteratively solves this fixed-point problem. The MLP method employs a multilevel
Monte Carlo approach(Giles, 2008), blending coarse and fine discretizations and allocating
more samples to deeper iterations to control variance. This strategy ensures computational
costs increase moderately with accuracy. According to Feynman–Kac and Bismut-Elworthy-Li
formula(Da Prato and Zabczyk, 1997; Elworthy and Li, 1994), the solution u∞ = (𝑢, 𝜎∗∇𝑦𝑢) of
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semilinear parabolic PDE (26) satisfies the fixed-point equation Φ(u∞) = u∞ where Φ:Lip( [0,𝑇] ×
R𝑑 , R1+𝑑) → Lip( [0,𝑇] ×R𝑑 , R1+𝑑) is defined as

(Φ(v)) (𝑠, 𝑥) =E

[
𝑔(𝑋 𝑠,𝑥𝑇 )

(
1,
[𝜎(𝑠, 𝑥)]∗
𝑇 − 𝑠

∫ 𝑇

𝑠

[
𝜎(𝑟, 𝑋 𝑠,𝑥𝑟 )−1𝐷

𝑠,𝑥
𝑟

]∗
𝑑𝑊𝑟

)]
+
∫ 𝑇

𝑠

E

[
𝐹(v(𝑡, 𝑋 𝑠,𝑥𝑡 ))

(
1,
[𝜎(𝑠, 𝑥)]∗
𝑡 − 𝑠

∫ 𝑡

𝑠

[
𝜎(𝑟, 𝑋 𝑠,𝑥𝑟 )−1𝐷

𝑠,𝑥
𝑟

]∗
𝑑𝑊𝑟

)]
𝑑𝑡.

(27)

Here 𝑋 𝑠,𝑥𝑡 and 𝐷
𝑠,𝑥
𝑡 are defined as

𝑋
𝑠,𝑥
𝑡 = 𝑥 +

∫ 𝑡

𝑠

𝜇(𝑟, 𝑋 𝑠,𝑥𝑟 )𝑑𝑟 +
𝑑∑︁
𝑗=1

∫ 𝑡

𝑠

𝜎 𝑗 (𝑟, 𝑋 𝑠,𝑥𝑟 )𝑑𝑊 𝑗
𝑟 ,

𝐷
𝑠,𝑥
𝑡 = IR𝑑×𝑑 +

∫ 𝑡

𝑠

( 𝜕
𝜕𝑥
𝜇) (𝑟, 𝑋 𝑠,𝑥𝑟 )𝐷𝑠,𝑥𝑟 𝑑𝑟 +

𝑑∑︁
𝑗=1

∫ 𝑡

𝑠

( 𝜕
𝜕𝑥
𝜎 𝑗) (𝑟, 𝑋 𝑠,𝑥𝑟 )𝐷𝑠,𝑥𝑟 𝑑𝑊

𝑗
𝑟 .

(28)

where 𝑊𝑡 : [0,𝑇] × Ω→ R
𝑑 is a standard (F𝑡)𝑡∈[0,𝑇 ]-adapted Brownian motion.

The Feynman-Kac formula gives

𝑢∞(𝑠, 𝑥) = E[𝑔(𝑋 𝑠,𝑥𝑇 )] +
∫ 𝑇

𝑠

E[𝐹(𝑢∞(𝑡, 𝑋 𝑠,𝑥𝑡 ), [𝜎(𝑡, 𝑋
𝑠,𝑥
𝑡 )]∗(∇𝑦𝑢∞) (𝑡, 𝑋

𝑠,𝑥
𝑡 ))]𝑑𝑡. (29)

Note that 𝜎∗∇𝑦𝑢∞ appeared on the right-hand side in the fixed point iteration, which necessitates
a new representation formula of it to be simultaneous with 29. And that is Bismut-Elworthy-Li
formula(Da Prato and Zabczyk, 1997; Elworthy and Li, 1994), which gives

[𝜎(𝑠, 𝑥)]∗(∇𝑦𝑢∞) (𝑠, 𝑥) =E

[
𝑔(𝑋 𝑠,𝑥𝑇 )

[𝜎(𝑠, 𝑥)]∗
𝑇 − 𝑠

∫ 𝑇

𝑠

[
𝜎(𝑟, 𝑋 𝑠,𝑥𝑟 )−1𝐷

𝑠,𝑥
𝑟

]∗
𝑑𝑊𝑟

]
+
∫ 𝑇

𝑠

E

[
𝐹(𝑢∞(𝑡, 𝑋 𝑠,𝑥𝑡 ), [𝜎(𝑡, 𝑋

𝑠,𝑥
𝑡 )]∗(∇𝑦𝑢∞) (𝑡, 𝑋

𝑠,𝑥
𝑡 ))

[𝜎(𝑠, 𝑥)]∗
𝑡 − 𝑠

∫ 𝑡

𝑠

[
𝜎(𝑟, 𝑋 𝑠,𝑥𝑟 )−1𝐷

𝑠,𝑥
𝑟

]𝑇
𝑑𝑊𝑟

]
𝑑𝑡,

(30)

Concatenating the solution as u∞ = (𝑢, 𝜎∗∇𝑦𝑢), we can define the iteration operator Φ:Lip( [0,𝑇] ×
R𝑑 , R1+𝑑) → Lip( [0,𝑇] ×R𝑑 , R1+𝑑) as the following

(Φ(v)) (𝑠, 𝑥) =E

[
𝑔(𝑋 𝑠,𝑥𝑇 )

(
1,
[𝜎(𝑠, 𝑥)]∗
𝑇 − 𝑠

∫ 𝑇

𝑠

[
𝜎(𝑟, 𝑋 𝑠,𝑥𝑟 )−1𝐷

𝑠,𝑥
𝑟

]∗
𝑑𝑊𝑟

)]
+
∫ 𝑇

𝑠

E

[
𝐹(v(𝑡, 𝑋 𝑠,𝑥𝑡 ))

(
1,
[𝜎(𝑠, 𝑥)]∗
𝑡 − 𝑠

∫ 𝑡

𝑠

[
𝜎(𝑟, 𝑋 𝑠,𝑥𝑟 )−1𝐷

𝑠,𝑥
𝑟

]∗
𝑑𝑊𝑟

)]
𝑑𝑡,

(31)

and 29, 30 yield

u∞ = Φ(u∞). (32)

The Multilevel Picard iteration considers simulating the Picard iteartion u𝑘 (𝑠, 𝑥) = (Φ(u𝑘−1)) (𝑠, 𝑥), 𝑘 ∈
N+, which is guaranteed to converge to u∞ as 𝑘→∞ for any 𝑠 ∈ [0,𝑇), 𝑥 ∈ R𝑑 (Yong and Zhou,
1999, Theorem 7.3.4). Formally, the MLP method uses MLMC(Giles, 2008, 2015) to simulate the
following telescope expansion problem derived from the Picard iteration.
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u𝑘 (𝑠, 𝑥) = u1(𝑠, 𝑥) +
𝑘−1∑︁
𝑙=1

[
u𝑙+1(𝑠, 𝑥) − u𝑙 (𝑠, 𝑥)

]
= Φ

(
u1

)
(𝑠, 𝑥) +

𝑘−1∑︁
𝑙=1

[
Φ

(
u𝑙

)
(𝑠, 𝑥) − Φ

(
u𝑙−1

)
(𝑠, 𝑥)

]
.

= (𝑔(𝑥), 0𝑑) +E

[
(𝑔(𝑋 𝑠,𝑥𝑇 ) − 𝑔(𝑥))

(
1,
[𝜎(𝑠, 𝑥)]∗
𝑇 − 𝑠

∫ 𝑇

𝑠

[
𝜎(𝑟, 𝑋 𝑠,𝑥𝑟 )−1𝐷

𝑠,𝑥
𝑟

]∗
𝑑𝑊𝑟

)]
+
𝑘−1∑︁
𝑙=0

∫ 𝑇

𝑠

E

[
(𝐹(u𝑙 (𝑡, 𝑋 𝑠,𝑥𝑡 )) − 1N(𝑙)𝐹(u𝑙−1(𝑡, 𝑋 𝑠,𝑥𝑡 )))

(
1,
[𝜎(𝑠, 𝑥)]∗
𝑡 − 𝑠

∫ 𝑡

𝑠

[
𝜎(𝑟, 𝑋 𝑠,𝑥𝑟 )−1𝐷

𝑠,𝑥
𝑟

]∗
𝑑𝑊𝑟

) ]
𝑑𝑡.

(33)

One can either estimate these integrations with the quadrature method(quadrature MLP (E
et al., 2021)) or the Monte-Carlo method(full-history MLP (Hutzenthaler et al., 2020b)), detialed
intruction is shown in demonstrated in B.2. A comprehensive summary of MLP variants can be
found at (Research Group on Stochastic Analysis, University of Duisburg-Essen, 2025).

B.2.1. Implementing Multilevel Picard Iterations

Suppose we are given effective simulators (e.g., Euler–Maruyama or Milstein) parameterized by
𝜑 (e.g. discretization level), which produce the numerical approximations

X (𝑙,𝑖)
𝑘,𝜑 (𝑠, 𝑥, 𝑡) ≈ 𝑋 𝑠,𝑥𝑡 , I (𝑙,𝑖)

𝑘,𝜑 (𝑠, 𝑥, 𝑡) ≈
(
1,
[𝜎(𝑠, 𝑥)]∗
𝑡 − 𝑠

∫ 𝑡

𝑠

[
𝜎(𝑟, 𝑋 𝑠,𝑥𝑟 )−1𝐷

𝑠,𝑥
𝑟

]∗
𝑑𝑊𝑟

)
, (34)

where 𝑘 denotes the total level, 𝑙 the current level, and 𝑖 (which may be negative) indexes the
sample path. To implement the Multilevel Picard Iterations, we need a numerical approximation
to the integral

∫ 𝑇

𝑠
E𝐹(u𝑙 (𝑡, 𝑋 𝑠,𝑥𝑡 ))𝑑𝑡. Following (E et al., 2021; Hutzenthaler et al., 2021), we

examine the following two methodologies, using quadrature rule and Monte Carlo algorithm to
approximate the integral

∫ 𝑇

𝑠
E𝐹(u𝑙 (𝑡, 𝑋 𝑠,𝑥𝑡 ))𝑑𝑡:

Quadrature MLP In this approach (E et al., 2021), quadrature rules are employed to approxi-
mate the time integrals that appear in the MLP formulation. This quadrature-based technique
is motivated by the need to efficiently and accurately resolve time integration errors while
maintaining the stability of the multilevel scheme. By leveraging well-established quadra-
ture polynomials, we obtain a deterministic and high-order accurate approximation that is
well-suited to the recursive structure of the SCaSML algorithm.

Definition 1 (Quadrature Polynomials). For each 𝑛 ∈ N, let (𝑐𝑛
𝑖
)𝑛
𝑖=1 ⊆ [−1, 1] denote the 𝑛 distinct

roots of the Legendre polynomial 𝑥 ↦→ 1
2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛

[
(𝑥2 − 1)𝑛

]
, and define the function 𝑞𝑛,[𝑎,𝑏] : [𝑎, 𝑏] → R by

𝑞𝑛,[𝑎,𝑏] (𝑡) =


∫ 𝑏

𝑎

∏
𝑖=1,...,𝑛

𝑐𝑛
𝑖
≠

2𝑡−(𝑎+𝑏)
𝑏−𝑎

2𝑥 − (𝑏 − 𝑎)𝑐𝑛
𝑖
− (𝑎 + 𝑏)

2𝑡 − (𝑏 − 𝑎)𝑐𝑛
𝑖
− (𝑎 + 𝑏) 𝑑𝑥, if 𝑎 < 𝑏 and 2𝑡−(𝑎+𝑏)

𝑏−𝑎 ∈ {𝑐𝑛1, . . . , 𝑐𝑛𝑛},

0, otherwise.

(35)

The quadrature polynomials serve as a fundamental building block to discretize the time
variable in the Picard iteration. With these polynomials, one can approximate the time integrals
with high-order accuracy while controlling the error propagation in the recursive iterations.
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Definition 2 (Quadrature Multilevel Picard Iteration). Let
{
U(𝑙, 𝑗)𝑛,𝑀,𝑄

}
𝑙, 𝑗∈Z

⊆ M
(
B([0,𝑇] ×R𝑑) ⊗

F ,B(R ×R𝑑)
)

be a family of measurable functions satisfying, for all 𝑙, 𝑗 ∈ N and (𝑠, 𝑥) ∈ [0,𝑇) ×R𝑑 ,

we start with U(0,± 𝑗)
𝑛,𝑀,𝑄 (𝑠, 𝑥) = 0𝑑+1. For 𝑛 > 0, we define the quadrature SCaSML iteration as

U𝑛,𝑀,𝑄 (𝑠, 𝑥) =
(
𝑔(𝑥), 0𝑑

)
+ 1
𝑀𝑛

𝑀𝑛∑︁
𝑖=1

(
𝑔
(
X (0,−𝑖)
𝑘,𝜑 (𝑠, 𝑥,𝑇)

)
− 𝑔(𝑥)

)
I (0,−𝑖)
𝑘,𝜑 (𝑠, 𝑥,𝑇)

+
𝑛−1∑︁
𝑙=0

∑︁
𝑡∈ (𝑠,𝑇 )

𝑞𝑄,[𝑠,𝑇 ] (𝑡)
𝑀𝑛−𝑙

𝑀𝑛−𝑙∑︁
𝑖=1

(
𝐹
(
U(𝑙,𝑖)𝑛,𝑀,𝑄 (𝑡,X

(𝑙,𝑖)
𝑘−𝑙,𝜑 (𝑠, 𝑥, 𝑡))

)
− 1N(𝑙) 𝐹

(
U(𝑙−1,−𝑖)
𝑛,𝑀,𝑄 (𝑡,X (𝑙,𝑖)

𝑘−𝑙,𝜑 (𝑠, 𝑥, 𝑡))
) )

· I (𝑙,𝑖)
𝑘−𝑙,𝜑 (𝑠, 𝑥, 𝑡).

(36)

The use of quadrature in this context is motivated by its ability to yield a systematic error
control over the temporal discretization, thereby enhancing the stability and accuracy of the
multilevel Picard iteration in the simulation-calibrated framework.

Full-history MLP The full-history MLP scheme (Hutzenthaler et al., 2021) adopts a Monte
Carlo approach to approximate the time integral

∫ 𝑇

𝑠
E𝐹(u𝑙 (𝑡, 𝑋 𝑠,𝑥𝑡 ))𝑑𝑡 instead of deterministic

quadrature rules with fixed time grids. This modification considerably simplifies error analy-
sis(Hutzenthaler et al., 2020a) and avoids all temporal discretization error.

In the full-history MLP, we employ a time-sampler that guarantees an unbiased Monte Carlo
approximation of time integrals. Let 𝔯 : Ω→ (0, 1) be a collection of independent and identically

distributed random variables with density 𝜌 satisfying P
(
𝔯 (𝑙,𝑖) ⩽ 𝑏

)
=

∫ 𝑏

0 𝜌(𝑠) 𝑑𝑠. Consider

numerically approximating the integral 𝐼( 𝑓 ; 𝑠, 𝑡) =
∫ 𝑡

𝑠
𝑓 (𝑟) 𝑑𝑟 with 𝑡 ∈ (𝑠,𝑇), we construct an

importance sampling estimator with sample size 𝑁:𝐼( 𝑓 ; 𝑠, 𝑡) = 1
𝑁

∑𝑁
𝑖=1

𝑓 (𝑅 (𝑖) ) 1{𝑅 (𝑖) ≤𝑡}
𝜚(𝑅 (𝑖) ,𝑠) , where 𝜚 is the

the rescaled density 𝜌 on (𝑠,𝑇) defined as 𝜚(𝑟, 𝑠) =
𝜌

(
𝑟−𝑠
𝑇−𝑠

)
𝑇−𝑠 and 𝑅 is the random sample from the

density 𝜚(·, 𝑠) on (𝑠,𝑇) via 𝑅 = 𝑠 + (𝑇 − 𝑠) 𝔯.

Definition 3 (Full-history Multilevel Picard Iteration (Hutzenthaler et al., 2020a)). Let
{
U(𝑙, 𝑗)𝑛,𝑀

}
𝑙, 𝑗∈Z

⊆

M
(
B([0,𝑇] ×R𝑑) ⊗ F ,B(R ×R𝑑)

)
be a family of measurable functions satisfying, for all 𝑙, 𝑗 ∈ N and

(𝑠, 𝑥) ∈ [0,𝑇) ×R𝑑 , we start with U(0,± 𝑗)
𝑛,𝑀 (𝑠, 𝑥) = 0𝑑+1. Then, for 𝑛 > 0, define the full-history SCaSML

iteration as

U𝑛,𝑀 (𝑠, 𝑥) =
(
𝑔(𝑥), 0𝑑

)
+ 1
𝑀𝑛

𝑀𝑛∑︁
𝑖=1

(
𝑔
(
X (0,−𝑖)
𝑘,𝜑 (𝑠, 𝑥,𝑇)

)
− 𝑔(𝑥)

)
I (0,−𝑖)
𝑘,𝜑 (𝑠, 𝑥,𝑇)

+
𝑛−1∑︁
𝑙=0

1
𝑀𝑛−𝑙

𝑀𝑛−𝑙∑︁
𝑖=1

1

𝜚(𝑠,R (𝑙,𝑖)𝑠 )

(
𝐹
(
U(𝑙,𝑖)𝑛,𝑀 (R

(𝑙,𝑖)
𝑠 ,X (𝑙,𝑖)

𝑘−𝑙,𝜑 (𝑠, 𝑥,R (𝑙,𝑖)𝑠 ))
)

− 1N(𝑙)𝐹
(
U(𝑙−1,−𝑖)
𝑛,𝑀 (R (𝑙,𝑖)𝑠 ,X (𝑙,𝑖)

𝑘−𝑙,𝜑 (𝑠, 𝑥,R (𝑙,𝑖)𝑠 ))
) )
· I (𝑙,𝑖)

𝑘−𝑙,𝜑

(
𝑠, 𝑥,R (𝑙,𝑖)𝑠

)
,

(37)

here R (𝑙,𝑖)𝑠 is 𝑖-th sampled time point after 𝑡 at level 𝑙 which is defined as as R (𝑙,𝑖)𝑠 = 𝑠 + (𝑇 − 𝑠) 𝔯 (𝑙,𝑖) .
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C. Algorithm

In this section, we describe the complete procedure of Simulation-Calibrated Scientific Machine
Learning (SCaSML) for solving high-dimensional partial differential equations (1). The SCaSML
framework at any space-time point (𝑡, 𝑥) can be summarized as follows:

• Step 1:Train a Base Surrogate. First, a surrogate model �̂� is trained to approximately solve
the target PDE (1), serving as a preliminary estimate of the true solution.

• Step 2:Physics-Informed Inference-Time Scaling via the Law of Defect. Recognizing that
the defect �̆� := 𝑢 − �̂� satisfies a semi-linear parabolic equation, termed the Law of defect,{

𝜕
𝜕𝑟
�̆� + ⟨𝜇,∇𝑦�̆�⟩ + 1

2 Tr
(
𝜎∗ Hess𝑦 �̆� 𝜎

)
+ 𝐹

(
�̆�, 𝜎∗∇𝑦�̆�

)
= 0, on [0,𝑇) ×R𝑑 ,

�̆�(𝑇 , 𝑦) = �̆�(𝑦), on R𝑑 ,

one obtains an estimate of �̆�(𝑡, 𝑥) by employing Multilevel Picard iteration, either through
quadrature-based MLP (Definition 2) or full-history MLP (Definition 3).

• Step 3:Final Estimation. The final estimate of the solution is then given by 𝑢(𝑡, 𝑥) ≈
�̂�(𝑡, 𝑥) + �̆�(𝑡, 𝑥).

The entire algorithm is detailed in Algorithm 1.

Remark 1. We emphasize that the sample-wise iteration in Algorithm 1 can be substituted by vectorized
operations, thereby enabling the algorithm to be applied concurrently to multiple points. These perfor-
mance enhancements were implemented using JAX and DeepXDE, resulting in a time reduction by a
factor of 5× to 10×.

Remark 2. Additionally, methods such as thresholding (Sebastian Becker et al., 2020) and Hutchinson’s
estimator (Hutchinson, 1989; Shi et al., 2025) could also be employed within the principal algorithm.
Thresholding (Algorithm 2) mitigates numerical instability by methodically "clipping" the defect estima-
tor Ŭ, a critical action when the surrogate model yields outlier values or when unbounded growth may
manifest during iterative correction phases. Hutchinson’s estimator (Algorithm 3) alleviates the computa-
tional and memory demands of 𝜀𝑃𝐷𝐸 in 𝐹 by forming an unbiased estimator that necessitates only a subset
of second-order derivatives approximating the Laplacian. This partial evaluation not only expedites the
simulation process but also minimizes peak memory consumption, thus averting out-of-memory issues.

D. Assumptions on Surrogate Models

In the following sections, we derive the main results of our work. Specifically, we show that
the global 𝐿2 error/computational complexity for SCaSML to achieve a given precision can be
expressed as the product of (i) the global 𝐿2 error/computational complexity of the MLP for
achieving the same error and (ii) the global 𝐿2 error of the surrogate model �̂�.

We begin by introducing the notations and the regularity assumptions, which apply to
both MLP models. The proofs for the quadrature MLP and full-history MLP are developed
independently. Note that, since we use a generic error function 𝑒(�̂�) with minimal constraints,
separate proof validations for each surrogate are not required.

D.1. Notations

Our analysis follows the structure in (E et al., 2021; Hutzenthaler et al., 2020a). In our setting,
we adopt the following definitions.
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Algorithm 1 Simulation-Calibrated Scientific Machine Learning for Solving High-Dimensional
Partial Differential Equation

Require: Level 𝑛, sample base 𝑀, target point (𝑠, 𝑥), a surrogate model �̂�, threshold 𝜀, (quadra-
ture order 𝑄 for using Qudrature MLP)

1: Train a base surrogate model �̂� to approximate the PDE solution.
2: Take MLP_Law_of_Defect(𝑠, 𝑥, 𝑛, 𝑀,𝑄) · (1, 0𝑑) + �̂�(𝑠, 𝑥) as estimation of 𝑢(𝑠, 𝑥)
3: function M L P _ L AW _ O F _ D E F E C T(𝑠, 𝑥, 𝑛, 𝑀, 𝑄)
4: û(𝑠, 𝑥) ←

(
�̂�(𝑠, 𝑥), 𝜎∗(𝑠, 𝑥)∇𝑦�̂�(𝑠, 𝑥)

)
5: if 𝑛 = 0 then ⊲ Start Inference-Time Scaling via Simulating the law of defect
6: Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥) ← 0𝑑+1
7: return Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥)
8: end if
9: Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥) ← (�̆�(𝑥), 0𝑑)

10: for 𝑖 = 1 to 𝑀𝑛 do
11: Sample Feyman-Kac Path X (0,−𝑖)

𝑘,𝜑 (𝑠, 𝑥,𝑇) and Derivative Process I (0,−𝑖)
𝑘,𝜑 (𝑠, 𝑥,𝑇) in (34)

12: Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥) ← Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥) + 1
𝑀𝑛

(
�̆�
(
X (0,−𝑖)
𝑘,𝜑 (𝑠, 𝑥,𝑇)

)
− �̆�(𝑥)

)
· I (0,−𝑖)

𝑘,𝜑 (𝑠, 𝑥,𝑇)
13: end for
14: for 𝑙 = 0 to 𝑛 − 1 do
15: for 𝑖 = 1 to 𝑀𝑛−𝑙 do
16: if using Quadrature MLP to calibrate then
17: Compute 𝑄 quadrature points with corresponding weights 𝑞𝑄,[𝑠,𝑇 ] (𝑡) by 1
18: for all quadrature points 𝑡 ∈ [𝑠,𝑇] do
19: Sample Feyman-Kac Path X (𝑙,𝑖)

𝑘,𝜑 (𝑠, 𝑥, 𝑡) and Derivative Process I (𝑙,𝑖)
𝑘,𝜑 (𝑠, 𝑥, 𝑡)

in (34)
20: z←MLP_Law_of_Defect(𝑡,X (𝑙,𝑖)

𝑘−𝑙,𝜑 (𝑠, 𝑥, 𝑡), 𝑙, 𝑀,𝑄)
21: if 𝑙 > 0 then
22: zprev ←MLP_Law_of_Defect(𝑡,X (𝑙,𝑖)

𝑘−𝑙,𝜑 (𝑠, 𝑥, 𝑡), 𝑙 − 1, 𝑀,𝑄)
23: Δ𝐹 ← 𝐹(z) − 𝐹(zprev)
24: else
25: Δ𝐹 ← 𝐹(z)
26: end if
27: Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥) ← Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥) + 𝑞𝑄,[𝑠,𝑇 ] (𝑡)

𝑀𝑛−𝑙 Δ𝐹 · I (𝑙,𝑖)
𝑘−𝑙,𝜑 (𝑠, 𝑥, 𝑡)

28: end for
29: end if
30: if using Full History MLP to calibrate then
31: Sample time step R (𝑙,𝑖)𝑠 ∼ 𝜚(𝑠,𝑇)
32: Sample Feyman-Kac Path X (𝑙,𝑖)

𝑘,𝜑 (𝑠, 𝑥,R (𝑙,𝑖)𝑠 ) and Derivative Process

I (𝑙,𝑖)
𝑘,𝜑 (𝑠, 𝑥,R (𝑙,𝑖)𝑠 ) in (34)

33: z←MLP_Law_of_Defect(R (𝑙,𝑖)𝑠 ,X (𝑙,𝑖)
𝑘−𝑙,𝜑 (𝑠, 𝑥,R (𝑙,𝑖)𝑠 ), 𝑙, 𝑀,𝑄)

34: if 𝑙 > 0 then
35: zprev ←MLP_Law_of_Defect(R (𝑙,𝑖)𝑠 ,X (𝑙,𝑖)

𝑘−𝑙,𝜑 (𝑠, 𝑥,R (𝑙,𝑖)𝑠 ), 𝑙 − 1, 𝑀,𝑄)
36: Δ𝐹 ← 𝐹(z) − 𝐹(zprev)
37: else
38: Δ𝐹 ← 𝐹(z)
39: end if
40: Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥) ← Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥) + 1

𝑀𝑛−𝑙 · 1
𝜚(𝑠,R (𝑙,𝑖)𝑠 )

· Δ𝐹 · I (𝑙,𝑖)
𝑘−𝑙,𝜑 (𝑠, 𝑥,R (𝑙,𝑖)𝑠 )

41: end if
42: end for
43: end for
44: Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥) ← Thresholding(𝜀, Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥)) ⊲ Threshold outliers using Algorithm 2
45: return Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥)
46: end function
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Algorithm 2 Thresholding the outliers (Sebastian Becker et al., 2020)

Require: Threshold 𝜀, defect estimator Ŭ
1: function T H R E S H O L D I N G(𝜀, Ŭ)
2: for 𝜈 = 1 to 𝑑 + 1 do
3: if Ŭ𝜈 > 𝜀 then
4: Ŭ𝜈 ← 𝜀

5: end if
6: if Ŭ𝜈 < −𝜀 then
7: Ŭ𝜈 ← −𝜀
8: end if
9: end for

10: return Clipped Ŭ
11: end function

Algorithm 3 Hutchison’s estimator for estimating Laplacian (Shi et al., 2025)

Require: Sample size 𝐾, target function 𝑓

1: function H T E(𝐾, 𝑓 )
2: Draw 𝐾 different indices from 1, . . . , 𝑑 with equal probability 1/𝑑, denoted as 𝑗1, . . . , 𝑗𝐾
3: Compute 𝐷2

𝑗𝑘
𝑓 , 1 ⩽ 𝜈 ⩽ 𝑑

4: Compute estimator HTE← 𝑑
𝐾

∑𝐾
𝑖=1 𝐷

2
𝑗𝑖
𝑓

5: return Laplacian estimator HTE
6: end function

Definition 1 (Discrete Inner Product and Norm). For each 𝑛 ∈ N and vectors 𝑣 = (𝑣1, . . . , 𝑣𝑛),
𝑤 = (𝑤1, . . . ,𝑤𝑛) ∈ R𝑛, the discrete inner product is defined as ⟨𝑣,𝑤⟩ = ∑𝑛

𝑖=1 𝑣𝑖𝑤𝑖. For 𝑝 ∈ N, the

discrete 𝑝-norm is defined by ∥𝑣∥ 𝑝 =
(∑𝑛

𝑖=1 |𝑣𝑖 |𝑝
) 1
𝑝
, and the discrete∞-norm by ∥𝑣∥∞ = max1≤ 𝑖≤𝑛 |𝑣𝑖 |.

Definition 2 (Probability Space and Continuous Norm). Let (Ω,A, P) be a probability space. For

a measurable function 𝑋 : Ω → R and 𝑝 ∈ N, the 𝐿𝑝-norm is defined as ∥𝑋 ∥𝐿𝑝 =
(
E[|𝑋 |𝑝]

) 1
𝑝 , and the

𝐿∞-norm as ∥𝑋 ∥𝐿∞ = ess sup𝜔∈Ω |𝑋 (𝜔) |.

Definition 3 (Sobolev Space and Norm). For a probability space Ω, 𝑘 ∈ N, and 1 ≤ 𝑝 ≤ ∞, the
Sobolev space 𝑊𝑘,𝑝(Ω) consists of functions 𝑢 ∈ 𝐿𝑝(Ω) whose weak derivatives 𝐷𝛼𝑢 exist and belong to
𝐿𝑝(Ω) for all multi-indices 𝛼 with |𝛼| ≤ 𝑘. Its norm is given by

∥𝑢∥𝑊𝑘,𝑝 (Ω) =

{∑
|𝛼 | ≤𝑘 ∥𝐷𝛼𝑢∥𝐿𝑝 (Ω) , 1 ≤ 𝑝 < ∞,∑
|𝛼 | ≤𝑘 ∥𝐷𝛼𝑢∥𝐿∞ (Ω) , 𝑝 = ∞.

(38)

Definition 4 (Laws of Extended Real Numbers). We adopt the following conventions: 0
0 = 0, 0 · ∞ = 0,

00 = 1, and
√
∞ = ∞. For every 𝑎 > 0 and 𝑏 ∈ R, we define 𝑎

0 = ∞, −𝑎0 = −∞, 0−𝑎 = ∞, 1
0𝑎 = ∞, 𝑏

∞ = 0,
and 0𝑎 = 0.

D.2. Regularity Assumptions for Surrogate Model

Let 𝑇 ∈ (0,∞), 𝑑 ∈ N, 𝐹 : M(B([0,𝑇] × R𝑑),B(R𝑑+1)) → M(B([0,𝑇] × R𝑑),B(R)), 𝑔 ∈
𝐶2(R𝑑 , R), and 𝐿 ∈ R𝑑+1, 𝐾 ∈ R𝑑 . Let (Ω,F , P, (F𝑡)𝑡∈[0,𝑇 ]) be a stochastic basis. Assume that
𝑊 (𝑙, 𝑗) : [0,𝑇] × Ω → R𝑑 for 𝑙, 𝑗 ∈ Z are independent standard Brownian motions, where the
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index 𝑙 represents the level in the MLP algorithm and 𝑗 differentiates between positive and
negative samples for error correction.

In the proof, we will maintain notations for PDE as we did in the main text, but setting
𝜇 = 0𝑑+1, 𝜎 ∈ R · I. In addition, for simplicity, we will see 𝜎 as a real number in the proof.

We use subscripts (typically 𝜈 or 𝛼) to denote individual components of vectors.

Now we list regularity assumptions for our PDE model.

Assumption 5 (Lipschitz Continuity of Nonlinearity and Terminal). For all u1, u2 inM(B([0,𝑇] ×
R𝑑),B(R𝑑+1)) and for all (𝑟, 𝑦) ∈ [0,𝑇] ×R𝑑 , there exist constants 𝐿𝜈 > 0 (𝜈 = 1, . . . , 𝑑 + 1) such that��(𝐹(u1) − 𝐹(u2)) (𝑟, 𝑦)

�� ≤ 𝑑+1∑︁
𝜈=1

𝐿𝜈
�� (u1(𝑟, 𝑦) − u2(𝑟, 𝑦)

)
𝜈

��, (39)

and the terminal function 𝑔 : R𝑑 → R satisfies, for all 𝑥, 𝑦 ∈ R𝑑 ,

|𝑔(𝑥) − 𝑔(𝑦) | ≤
𝑑∑︁
𝛼=1

𝐾𝛼 | (𝑥 − 𝑦)𝛼 |, (40)

for some constants 𝐾𝛼 > 0.

In practice, we assume the existence of a surrogate model parameterized by 𝜃 (which
may be biased, e.g. PINN, Gaussian Process, etc.) that produces an estimated solution �̂� ∈
𝑊1,∞( [0,𝑇] ×R𝑑). Associated with this surrogate is an error controller 𝑒(�̂�). The goal of SCaSML
is to compute the bias �̆� = 𝑢∞ − �̂�. The assumptions regarding the surrogate model’s accuracy
(assumption 1 or 1) are specified for each correction method in the corresponding proof sections.

Assumption 6 (Lipschitz Continuity of the Surrogate Terminal). Assume that there exists �̂� ∈ R𝑑

such that |�̂�(𝑥) − �̂�(𝑦) | ≤ ∑𝑑
𝛼=1 �̂�𝛼 | (𝑥 − 𝑦)𝛼 |, ∀𝑥, 𝑦 ∈ R𝑑 .

We can easily show that the Lipschitz conditions 5 and 6 transfer to bias:

Definition 7 (Lipschitz Continuity of the Bias Nonlinearity and Terminal Condition). Assume
that assumption 6 holds. We define 𝐿 ∈ R𝑑+1 and �̆� ∈ R𝑑 as vectors of minimal ∥ · ∥1 norm such that for
all (𝑟, 𝑦) ∈ [0,𝑇] ×R𝑑 ,��𝐹(ŭ1) (𝑟, 𝑦) − 𝐹(ŭ2) (𝑟, 𝑦)

�� ≤ 𝑑+1∑︁
𝜈=1

𝐿𝜈
��(ŭ1(𝑟, 𝑦) − ŭ2(𝑟, 𝑦))𝜈

��, (41)

and for all 𝑥, 𝑦 ∈ R𝑑 ,

|�̆�(𝑥) − �̆�(𝑦) | ≤
𝑑∑︁
𝛼=1

�̆�𝛼 | (𝑥 − 𝑦)𝛼 |, (42)

as the Lipschitz constants for 𝐹 and �̆�.

Remark 8. We observe that
��𝐹(ŭ1) (𝑟, 𝑦) − 𝐹(ŭ2) (𝑟, 𝑦)

�� = |𝐹(û+ ŭ1) (𝑟, 𝑦) − 𝐹(û) (𝑟, 𝑦) − 𝐹(û+ ŭ2) (𝑟, 𝑦) +
𝐹(û) (𝑟, 𝑦) | = |𝐹(û + ŭ1) (𝑟, 𝑦) − 𝐹(û + ŭ2) (𝑟, 𝑦) | ⩽

∑𝑑+1
𝜈=1 𝐿𝜈 | (ŭ1(𝑟, 𝑦) − ŭ2(𝑟, 𝑦))𝜈 |. This directly implies

that ∥𝐿∥1 ⩽ ∥𝐿∥1, providing a moderate upper bound for the Lipschitz constant associated with the bias
term. This bound is instrumental in the analyses of theorems 4 and 2, reinforcing the reasonableness
of the corresponding error estimates. Similarly, we also have an initial estimation �̆�𝛼 ⩽ 𝐾𝛼 + �̂�𝛼 for all
𝛼 = 1, . . . , 𝑑, which derives ∥ �̆�∥1 ⩽ ∥𝐾∥1.
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E. Proof for Quadrature Multilevel Picard Iteration

In this section, we present the proof for the Quadrature Multilevel Picard (MLP) iteration
method. For simplicity, we consider the case where 𝜇 = 0 and 𝜎 = 𝑠I𝑑 (𝑠 ∈ R) in the proof.
We first establish the mathematical framework and underlying assumptions, then analyze the
convergence properties and computational complexity of our proposed simulation-calibrated
variant. The result shows that the error of SCaSML is bounded by the product of MLP error and
surrogate error. Likewise, the complexity is bounded by the product of MLP error and surrogate
error. Both indicate that surrogate models can substantially reduce computational complexity
while maintaining accuracy guarantees.

Since the Law of defect is also a semi-linear heat equation, we can use the quadrature/full-
history multilevel Picard iteration to obtain an estimation Ŭ(𝑠, 𝑥) of 𝑢(𝑠, 𝑥) − �̂�(𝑠, 𝑥). In this section,
we study the theoretical properties of SCaSML that using Quadrature Multilevel Picard Iteration
to solve the Law of defect and we investigate the full-history multilevel Picard iteration in
the next section.

E.1. Assumptions of the Surrogate Model

Inference-time scaling of a language model demands a strong enough base language model.
Similarly, scaling a neural PDE solver at inference time requires an accurately approximated
surrogate model. In this section, we elucidate the assumptions embedded in the error measure
𝑒(�̂�)—a metric that quantifies the surrogate model’s accuracy and underpins the enhanced
convergence rates achieved by the SCaSML methodology.

Assumption 1 (Accuracy of the Surrogate Model for Quadrature MLP). Let �̆�∞ ∈ 𝐶∞( [0,𝑇] ×
R𝑑 , R) and sup𝑡∈[0,𝑇 ] ∥�̆�∞(𝑡, ·)∥𝑊1,∞ < ∞. There exist constants 𝐶𝑄,1,𝐶𝑄,2,𝐶𝑄,3 > 0 such that:

1. 𝐿∞ PDE Residual Bound:sup𝑟∈[0,𝑇 ],𝑦∈R𝑑 |𝜀PDE(𝑟, 𝑦) | ⩽ 𝐶𝑄,1 𝑒(�̂�)
2. 𝑊1,∞ Error Bound:sup𝑟∈[0,𝑇 ] ∥�̆�(𝑟, ·)∥𝑊1,∞ ⩽ 𝐶𝑄,2 𝑒(�̂�)

3. Smoothness of the solution:sup
𝑘∈N

∥(1,∇𝑦)
(
( 𝜕
𝜕𝑟
+ 𝜎2

2 Δ𝑦)𝑘�̆�
)
(𝑟, 𝑦)∥𝐿∞

(𝑘!)3/4
⩽ 𝐶𝑄,3 𝑒(�̂�)

Assumption 2 (Quadrature Integrability Assumption (Hutzenthaler and Kruse, 2020, Lemma
4.1)). There exists 𝑝 ∈ N such that for the zero function 0𝑑+1 (initializer) and for all 𝑡 ∈ [0,𝑇],

sup
𝑥∈R𝑑

|�̆�(𝑥) |
1 + ∥𝑥∥ 𝑝1

+ sup
𝑥∈R𝑑

|𝐹(0𝑑+1) (𝑡, 𝑥) |
1 + ∥𝑥∥ 𝑝1

< ∞. (43)

This accuracy of the surrogate model establishes a critical relationship between several error
terms and our error measure 𝑒(�̂�). Specifically, it ensures that the PDE residual, the bias of
the surrogate model 𝜃, and the amplification resulting from repeated applications of the PDE
operator are all controlled by 𝑒(�̂�).

This assumption guarantees that both the terminal condition and the nonlinearity exhibit
suitable growth properties, which is essential for ensuring that our numerical scheme remains
stable.

E.2. Main Results

We now present our main theoretical results, which characterize both the accuracy and computa-
tional complexity of our proposed method. These results demonstrate the substantial efficiency
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gains achieved by incorporating surrogate models into the multilevel Picard framework.

E.2.1. Bound on Global 𝐿2 Error

Our proof leverages the observation that the global 𝐿2 error of the MLP is primarily determined
by the Lipschitz continuity of the PDE’s terminal&solution and the magnitude of its nonlinearity
at the origin. We demonstrate that the factor associated with the Law of defect are bounded
by the surrogate error. We first show how the complexity characterization of MLP can be
bounded by the error measurement in the following lemma.

Lemma 3 (Complexity Estimation via Surrogate Model’s Error Measure 𝑒(�̂�)). Suppose assump-
tions 5, 6, 2 and 1 hold. There exists a constant 𝐶𝑄 > 0 such that

sup
(𝑟,𝑦) ∈ [0,𝑇 ]×R𝑑

{��(𝐹(0𝑑+1)) (𝑟, 𝑦)�� + 𝜎√𝑇 + 3 ∥ �̆�∥1 + sup
𝑘∈N

∥(1,∇𝑦)
(
( 𝜕
𝜕𝑟
+ 𝜎2

2 Δ𝑦)𝑘�̆�∞
)
(𝑟, 𝑦)∥∞

(𝑘!)3/4

}
⩽ 𝐶𝑄 𝑒(�̂�).

(44)

Proof. To establish this bound, we analyze each term separately using the accuracy of the
surrogate model (Assumption 1). For the first term, recalling that 𝐹(v) := 𝐹((�̂�, 𝜎∇𝑦�̂�) + v) −
𝐹((�̂�, 𝜎∇𝑦�̂�)) + 𝜀𝑃𝐷𝐸 ⇒ 𝐹(0𝑑+1) = 𝜀𝑃𝐷𝐸, we can directly apply 𝐿∞ residual bound in assumption 1:

sup
(𝑟,𝑦) ∈ [0,𝑇 ]×R𝑑

| (𝐹(0𝑑+1)) (𝑟, 𝑦) | = sup
𝑟∈[0,𝑇 ],𝑦∈R𝑑

|𝜀PDE(𝑟, 𝑦) | ⩽ 𝐶𝑄,1𝑒(�̂�). (45)

Suppose 𝑒𝛼 is the unit vector with 1 at its 𝛼-th component. For the second term, we note that �̆�
is the vector of Lipschitz constants of �̆�, so it must holds that �̆�𝛼 ⩽ ∥𝐷𝑒𝛼 �̆�∥𝐿∞ (Just check the definition in 7) ⇒
∥ �̆�∥1 =

∑𝑑
𝛼=1 �̆�𝛼 ⩽

∑𝑑
𝛼=1 ∥𝐷𝑒𝛼 �̆�∥𝐿∞ =

∑𝑑+1
𝛼=2 ∥𝐷𝑒𝛼𝑢(𝑇 , ·)∥𝐿∞ , and the RHS can be controlled by 𝑊1,∞

error bound in assumption 1. Combing this fact and definition of Sobolev norm 3, we get:

∥ �̆�∥1 ⩽
𝑑∑︁
𝛼=1

∥𝐷𝑒𝛼 �̆�∥𝐿∞ ⩽
𝑑+1∑︁
𝛼=2

∥𝐷𝑒𝛼 �̆�∞(𝑇 , ·)∥𝐿∞ + ∥�̆�∞(𝑇 , ·)∥𝐿∞ = ∥�̆�(𝑇 , ·)∥𝑊1,∞ (46)

⩽ sup
𝑟∈[0,𝑇 ]

∥�̆�(𝑟, ·)∥𝑊1,∞ ⩽ 𝐶𝑄,2𝑒(�̂�). (47)

For the third term, we observe that 𝐿∞ operator bound in assumption 1 is identical to the
conclusion, which gives:

sup
𝑘∈N

∥ (1,∇𝑦 )
(
( 𝜕
𝜕𝑟
+𝜎

2

2 Δ𝑦 )𝑘�̆�∞
)
(𝑟,𝑦) ∥𝐿∞

(𝑘!)
3
4

⩽ 𝐶𝑄,3𝑒(�̂�). (48)

Plugging 45, 46 and 48 in the LHS of 3, we have

sup
(𝑟,𝑦) ∈ [0,𝑇 ]×R𝑑

{��(𝐹(0𝑑+1)) (𝑟, 𝑦)�� + 𝜎√𝑇 + 3 ∥ �̆�∥1 + sup
𝑘∈N

∥(1,∇𝑦)
(
( 𝜕
𝜕𝑟
+ 𝜎2

2 Δ𝑦)𝑘�̆�∞
)
(𝑟, 𝑦)∥∞

(𝑘!)3/4

}
(49)

⩽(𝐶𝑄,1 + 𝐶𝑄,2𝜎
√
𝑇 + 3 + 𝐶𝑄,3)𝑒(�̂�). (50)

Defining 𝐶𝑄 = 𝐶𝑄,1 + 𝐶𝑄,2𝜎
√
𝑇 + 3 + 𝐶𝑄,3 in 49, we complete the proof. □
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This lemma is instrumental in establishing our main error bound, as it directly connects the
key parameters of our numerical scheme to the surrogate model’s quality measure 𝑒(�̂�).

Theorem 4 (Bound of Global 𝐿2 Error). Under assumptions 5, 6, 2 and 1, it holds that

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}




(Ŭ𝑁,𝑁,𝑁 (𝑡, 𝑥) − ŭ∞(𝑡, 𝑥)
)
𝜈





𝐿2
⩽ 𝐶𝑄 𝑒(�̂�) 𝐸(𝑁), (51)

where

𝐸(𝑁) =7𝐶𝑁 2𝑁−1𝑒𝑁
√
𝑁 𝑁−3

+

(
14

(
4𝐶

)𝑁−1 + 1
)
𝑇2𝑁+1

√
𝑁𝑁

, (52)

and

𝐶 = 2(
√
𝑇 + 1)

√
𝑇𝜋(∥𝐿∥1 + 1) + 1. (53)

Proof. Under assumptions 2 and 7, (Hutzenthaler and Kruse, 2020, Corollary 4.7) indicates that
for 𝑛 = 𝑀 = 𝑄 = 𝑁 ⩾ 2, we obtain an error bound of the form:


(Ŭ𝑁,𝑁,𝑁 (𝑡, 𝑥) − ŭ∞(𝑡, 𝑥)

)
𝜈





𝐿2
⩽𝐸(𝑁) · sup

(𝑟,𝑦) ∈ [0,𝑇 ]×R𝑑

{��(𝐹(0𝑑+1)) (𝑟, 𝑦)�� + 𝜎√𝑇 + 3 ∥ �̆�∥1

+ sup
𝑘∈N

∥(1,∇𝑦)
(
( 𝜕
𝜕𝑟
+ 𝜎2

2 Δ𝑦)𝑘�̆�∞
)
(𝑟, 𝑦)∥∞

(𝑘!)3/4

}
.

(54)

Applying Lemma 3 to substitute the supremum term in 54 with 𝐶𝑄 𝑒(�̂�) completes the
proof. □

This theorem provides a comprehensive characterization of the approximation error for our
method. The error bound consists of two components:(1) the surrogate model error measure
𝑒(�̂�) scaled by a constant 𝐶𝑄, and (2) a term 𝐸(𝑁) that depends on the number of iterations 𝑁
and decreases as 𝑁 increases. This factorization clearly demonstrates how the quality of the
surrogate model directly influences the overall approximation error.

An error order estimation w.r.t. 𝑁 immediately follows:

Corollary 5 (Error Order). Under assumptions 5, 6, 2 and 1, it holds that

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}




(Ŭ𝑁,𝑁,𝑁 (𝑡, 𝑥) − ŭ∞(𝑡, 𝑥)
)
𝜈





𝐿2
⩽ 𝐶𝑄 𝑒(�̂�) exp

(
𝑁 log 𝑁 (−1

2
+ 𝑜(1))

)
, (55)

Proof. It suffices to estimate the order of 𝐸(𝑁). Note that for the first term

7𝐶𝑁 2𝑁−1𝑒𝑁
√
𝑁 𝑁−3

= exp

(
log 7 + 𝑁 log𝐶 + (𝑁 − 1) log 2 + 𝑁 − 𝑁 − 3

2
log 𝑁

)
(56)

= exp

(
𝑁 log 𝑁 (−1

2
+ 𝑜(1))

)
. (57)
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Similarly, for the second term(
14

(
4𝐶

)𝑁−1 + 1
)
𝑇2𝑁+1

√
𝑁𝑁

= exp

(
(2𝑁 + 1) log𝑇 + log(14(4𝐶)𝑁−1 + 1) − 𝑁

2
log 𝑁

)
(58)

= exp

(
𝑁 log 𝑁 (−1

2
+ 𝑜(1))

)
. (59)

Thus, combining 56 and 58, we have 𝐸(𝑁) = 𝑂

(
exp

(
𝑁 log 𝑁 (−1

2 + 𝑜(1))
))

. □

E.2.2. Bound on Computational Complexity

To fully assess the efficiency of our method, we now analyze its computational complexity. We
introduce two key metrics that capture different aspects of the computational cost.

Definition 6 (Computational Complexity of Quadrature SCaSML). We define the following com-
plexity measures:

First, let {RN𝑛,𝑀,𝑄}𝑛,𝑀,𝑄∈Z ⊂ N satisfy RN0,𝑀,𝑄 = 0 and, for all 𝑛, 𝑀,𝑄 ∈ N,

RN𝑛,𝑀,𝑄 ⩽ 𝑑 𝑀𝑛 +
𝑛−1∑︁
𝑙=0

[
𝑄 𝑀𝑛−𝑙

(
𝑑 +RN𝑙,𝑀,𝑄 +1N(𝑙) RN𝑙−1,𝑀,𝑄

)]
. (60)

This number represents the total scalar normal random variable realizations required for computing one
sample of Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥).

Second, let {FE𝑛,𝑀,𝑄}𝑛,𝑀,𝑄∈Z ⊂ N satisfy FE0,𝑀,𝑄 = 0 and, for all 𝑛, 𝑀,𝑄 ∈ N,

FE𝑛,𝑀,𝑄 ⩽ 𝑀𝑛 +
𝑛−1∑︁
𝑙=0

[
𝑄 𝑀𝑛−𝑙

(
1 + FE𝑙,𝑀,𝑄 +1N(𝑙) + 1N(𝑙) FE𝑙−1,𝑀,𝑄

)]
. (61)

This quantity reflects the number of evaluations of 𝐹 and �̆� necessary to compute of one sample of
Ŭ𝑛,𝑀,𝑄 (𝑠, 𝑥).

These metrics provide a comprehensive measure of the computational resources required
by our method. The first metric, RN𝑛,𝑀,𝑄, accounts for the cost of generating random variables,
while the second, FE𝑛,𝑀,𝑄, captures the number of function evaluations needed.

Theorem 7 (Complexity of Quadrature SCaSML). Under assumptions 5, 6, 2 and 1, for any 𝛿 > 0
and all 𝑁 ∈ N, we have

RN𝑁,𝑁,𝑁 +FE𝑁,𝑁,𝑁 ≤
[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}




(Ũ𝑁,𝑁,𝑁 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈





𝐿2

]−(4+𝛿)
· 8(𝑑 + 1) (𝐶𝑄𝑒(�̂�))4+𝛿 exp

(
𝑁 log 𝑁 (−𝛿

2
+ 𝑜(1))

)
< ∞.

(62)

Proof. From established results in (Hutzenthaler et al., 2020a, Lemma 3.6), we know that for all
𝑁 ∈ N,

RN𝑁,𝑁,𝑁 ⩽ 8𝑑𝑁2𝑁 , FE𝑁,𝑁,𝑁 ⩽ 8𝑁2𝑁 . (63)
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We want to use the 𝑂(𝑁𝑁/2) denominator in Theorem 4 to compensate for the 𝑁2𝑁 term in the
complexity. Suppose the maximum error is 𝜀, and note that 𝑁2𝑁 = (𝑁𝑁/2)4 < (𝑁𝑁/2)4+𝛿,∀𝛿 > 0,
we multiply the complexity by 𝜀4+𝛿, i.e.

(RN𝑁,𝑁,𝑁 + FE𝑁,𝑁,𝑁)
[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑁,𝑁 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

] (4+𝛿)

⩽8(𝑑 + 1)𝑁2𝑁 ·
(7

(
2(
√
𝑇 + 1)

√
𝑇𝜋(∥𝐿∥1 + 1) + 1

)𝑁
2𝑁−1𝑒𝑁

√
𝑁𝑁−3

+ (14(8(
√
𝑇 + 1)

√
𝑇𝜋(∥𝐿∥1 + 1) + 4)𝑁−1 + 1)𝑇2𝑁+1

√
𝑁𝑁

) (4+𝛿)
(𝐶𝑄𝑒(�̂�))4+𝛿

⩽8(𝑑 + 1)𝑁2𝑁 ·
(
(24(𝑇 + 1))3𝑁

(
∥𝐿∥1 + 1

)𝑁 √
𝑁
−𝑁 ) (4+𝛿) (𝐶𝑄𝑒(�̂�))4+𝛿

⩽8(𝑑 + 1) (𝐶𝑄𝑒(�̂�))4+𝛿 exp

(
𝑁 log 𝑁 (−𝛿

2
+ 𝑜(1))

)
.

(64)

The right-hand side of this expression is clearly decreasing for large enough 𝑁, and in turn,
finite. Hence, quadrature SCaSML boosts a quadrature MLP with complexity 𝑂(𝑑𝜀−(4+𝛿) ) to a
corresponding physics-informed inference solver with complexity 𝑂(𝑑𝑒(�̂�)4+𝛿𝜀−(4+𝛿) ) □

This theorem provides a comprehensive characterization of the computational complexity of
our method. The inclusion of the surrogate model error measure 𝑒(�̂�) in the complexity bound
demonstrates how the quality of the surrogate model directly influences the computational
efficiency of our approach. Specifically, a more accurate surrogate model (smaller 𝑒(�̂�)) leads to
a lower computational cost for achieving a given level of accuracy.

F. Proof for full-history Multilevel Picard Iteration

This section examines the theoretical guarantees of SCaSML employing full-history Multilevel
Picard Iteration to address the law of defects. For simplicity, we consider the case where
𝜇 = 0 and 𝜎 = 𝑠I𝑑 (𝑠 ∈ R) in the proof. One need to select a density 𝜌 satisfying P

(
𝔯 (𝑙,𝑖) ≤

𝑏
)
=

∫ 𝑏

0 𝜌(𝑠) 𝑑𝑠 = 𝑏1−𝛼, 𝑏 ∈ (0, 1),𝛼 > 0 for full-history MLP (Definition 2). In the numerical
experiments, we select 𝜌(𝑠) = (1 − 𝛼)𝑠−𝛼.

F.1. Assumptions of the Surrogate Model

Relative to the quadrature discretization scheme, the Monte Carlo scheme in the context of
full-history MLP imposes less stringent requirements on the surrogate model to attain a product
convergence rate. In this section, we explicate the assumptions inherent in the error measure
𝑒(�̂�)—a metric that evaluates the accuracy of the surrogate model and supports the improved
convergence rates realized by the SCaSML methodology.

Assumption 1 (Accuracy of the Surrogate Model for full-history MLP). Let sup𝑡∈[0,𝑇 ] ∥�̆�∞(𝑡, ·)∥𝑊1,∞ <

∞. There exist constants 𝐶𝐹,1,𝐶𝐹,2 > 0 such that:
1. 𝐿∞ Residual Bound: sup𝑟∈[0,𝑇 ],𝑦∈R𝑑 |𝜀PDE(𝑟, 𝑦) | ⩽ 𝐶𝐹,1 𝑒(�̂�),
2. 𝑊1,∞ Error Bound: sup𝑟∈[0,𝑇 ] ∥�̆�(𝑟, ·)∥𝑊1,∞ ⩽ 𝐶𝐹,2 𝑒(�̂�).
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Note that the 𝐿∞ operator bound, which comes from the time discretization error of the
quadrature rule, in assumption 1 is avoided, due to the unbiasedness of the Monte Carlo time
integral. This elimination significantly reduced the regularity requirement on the solution,
indicating better robustness of the Monte Carlo method for malformed situations.

Assumption 2 carries over to the full-history setting in a weaker form. Similarly, the following
integrability assumption from literature is needed (Hutzenthaler et al., 2021, Lemma 3.3):

Assumption 2 (full-history Integrability Assumption). There exists 𝑝 ∈ N such that for the zero
function initializer 0𝑑+1 and for all 𝑡 ∈ [0,𝑇) and 𝑞 ∈ [1, 𝑝),∫ 1

0

1
𝑠𝑞/2𝜌(𝑠)𝑞−1

𝑑𝑠 + sup
𝑠∈[𝑡,𝑇 )

E
[��𝐹(0𝑑+1) (𝑡, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)

��𝑞] < ∞. (65)

Contrary to the integrability assumption 2 in the quadrature case, the Monte Carlo scheme
shifts the requirement on the terminal term to the time distribution from which we sample steps.
Intuitively, it requires a larger 𝛼 to allocate more probability near time 0, where the information
from 𝑢 is relatively scarce, compared to the terminal given at time 𝑇 . Also, the integrability
condition on the nonlinearity is strengthened to remain integrable under perturbation to deal
with less regular situation.

F.2. Main Results

We now show that, with an appropriately trained surrogate model, the Law of defect can be
simulated with lower complexity than the original PDE. In particular, the error of the full-history
MLP is upper-bounded by the surrogate model’s error measure 𝑒(�̂�).

F.2.1. Bound on Global 𝐿2 Error

Our proof still utilizes the insight that the overall 𝐿2 error in the MLP mainly hinges on the
Lipschitz continuity of the PDE’s terminal and solution, as well as the extent of nonlinearity at
the origin. We illustrate that the parameter linked to the Law of defect is constrained by the
surrogate error. Initially, we present a lemma demonstrating how the complexity of MLP can be
capped by the error assessment.

Lemma 3 (Complexity Estimation via Surrogate Model’s Error Measure 𝑒(�̂�)). Under assumptions
5, 6, 2 and 1 , suppose 𝑝 ⩾ 2, 𝑥 ∈ R𝑑 . There exists a constant 𝐶𝐹 > 0 such that for all 𝑀, 𝑁 ≥ 2,

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

{
𝜎
√︁

max{𝑇 − 𝑡, 3}∥ �̆�∥1√
𝑀

+
𝐶 sup𝑠∈[𝑡,𝑇 ) ∥ 𝐹(0𝑑+1) (𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)∥

𝐿
2𝑝
𝑝−2

2
√
𝑀

(66)

+
𝐶 sup𝑠∈[𝑡,𝑇 ) , 𝜈∈{1,...,𝑑+1} ∥ŭ(𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)𝜈∥

𝐿
2𝑝
𝑝−2

2

}
≤ 𝐶𝐹 𝑒(�̂�), (67)

where

𝐶 = max
{
1, 2𝑇

1
2 |Γ( 𝑝

2
) |

1
𝑝 (1 − 𝛼)

1
𝑝
−1 max{1, ∥𝐿∥1}max

{
𝑇

1
2 , 2

1
2 |Γ( 𝑝 + 1

2
) |

1
𝑝𝜋
− 1

2𝑝

}}
. (68)

Proof. The proof is almost identical with 3. We use the accuracy of the surrogate model 1 to
control each term.
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Suppose 𝑒𝛼 is the unit vector with 1 at its 𝛼-th component. For the first term, we note that �̆� is the
vector of Lipschitz constants of �̆�, so it must holds that �̆�𝛼 ⩽ ∥𝐷𝑒𝛼 �̆�∥𝐿∞ (Just check the definition in 7) ⇒
∥ �̆�∥1 =

∑𝑑
𝛼=1 �̆�𝛼 ⩽

∑𝑑
𝛼=1 ∥𝐷𝑒𝛼 �̆�∥𝐿∞ =

∑𝑑+1
𝛼=2 ∥𝐷𝑒𝛼𝑢(𝑇 , ·)∥𝐿∞ , and the RHS can be controlled by 𝑊1,∞

error bound in assumption 1. Combing this fact and definition of Sobolev norm 3, we get:

∥ �̆�∥1 ⩽
𝑑∑︁
𝛼=1

∥𝐷𝑒𝛼 �̆�∥𝐿∞ ⩽
𝑑+1∑︁
𝛼=2

∥𝐷𝑒𝛼 �̆�∞(𝑇 , ·)∥𝐿∞ + ∥�̆�∞(𝑇 , ·)∥𝐿∞ = ∥�̆�(𝑇 , ·)∥𝑊1,∞ (69)

⩽ sup
𝑟∈[0,𝑇 ]

∥�̆�(𝑟, ·)∥𝑊1,∞ ⩽ 𝐶𝐹,2𝑒(�̂�). (70)

For the second term, recalling that 𝐹(v) := 𝐹((�̂�, 𝜎∇𝑦�̂�) + v) − 𝐹((�̂�, 𝜎∇𝑦�̂�)) + 𝜀𝑃𝐷𝐸 ⇒ 𝐹(0𝑑+1) = 𝜀𝑃𝐷𝐸
and that under probability measure we have ∥ · ∥

𝐿
2𝑝
𝑝−2

⩽ ∥ · ∥𝐿∞ , we apply 𝐿∞ residual bound in

assumption 1:

sup
𝑠∈[𝑡,𝑇 )



𝐹(0𝑑+1) (𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)



𝐿

2𝑝
𝑝−2

= sup
𝑠∈[𝑡,𝑇 )

∥(𝜀PDE) (𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)∥
𝐿

2𝑝
𝑝−2

(71)

⩽ sup
𝑟∈[0,𝑇 ],𝑦∈R𝑑

|𝜀PDE(𝑟, 𝑦) | ⩽ 𝐶𝐹,1𝑒(�̂�) (72)

For the third term, recalling that ŭ = (�̆�∞, 𝜎∇𝑦�̆�∞) and that under probability measure we have
∥ · ∥

𝐿
2𝑝
𝑝−2

⩽ ∥ · ∥𝐿∞ , we apply the 𝑊1,∞ error bound in assumption 1 again:

sup
𝑠∈[𝑡,𝑇 ) ,𝜈∈{1,2,...,𝑑+1}

∥ŭ(𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)𝜈∥
𝐿

2𝑝
𝑝−2

⩽ sup
𝑠∈[𝑡,𝑇 )

max
𝜈∈{1,2,...,𝑑+1}

∥ŭ(𝑠, 𝑥)𝜈∥𝐿∞ (73)

⩽
𝑑+1∑︁
𝛼=2

∥𝐷𝑒𝛼 �̆�∞(𝑇 , ·)∥𝐿∞ + ∥�̆�∞(𝑇 , ·)∥𝐿∞ ⩽ ∥�̆�(𝑇 , ·)∥𝑊1,∞

(74)

⩽ sup
𝑟∈[0,𝑇 ]

∥�̆�(𝑟, ·)∥𝑊1,∞ ⩽ 𝐶𝐹,2𝑒(�̂�). (75)

Plugging 69, 71 and 73 in LHS of 3, and define 𝐶𝐹 = 𝐶
2𝐶𝐹,1 + (𝜎

√︁
max{𝑇 − 𝑡, 3} + 𝐶

2 )𝐶𝐹,2, we have

𝜎
√︁

max{𝑇 − 𝑡, 3}∥ �̆�∥1√
𝑀

+
𝐶 sup𝑠∈[𝑡,𝑇 ) ∥ 𝐹(0𝑑+1) (𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)∥

𝐿
2𝑝
𝑝−2

2
√
𝑀

(76)

+
𝐶 sup𝑠∈[𝑡,𝑇 ) , 𝜈∈{1,...,𝑑+1} ∥ŭ(𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)𝜈∥

𝐿
2𝑝
𝑝−2

2
(77)

⩽
(
𝐶

2
𝐶𝐹,1 + (𝜎

√︁
max{𝑇 , 3} + 𝐶

2
)𝐶𝐹,2

)
𝑒(�̂�) ⩽ 𝐶𝐹 𝑒(�̂�). (78)

Noting that the RHS is independent of (𝑡, 𝑥), we take sup(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑 for both side, and proved
the lemma. □

The above lemma, together with standard error estimates for the full-history MLP, yields the
following result.

Theorem 4 (Bound of Global 𝐿2 Error). Under assumptions 5, 6, 2 and 1 , suppose 𝑝 ⩾ 2, 𝛼 ∈
( 𝑝−2

2(𝑝−1) ,
𝑝

2(𝑝−1) ), 𝑡 ∈ [0,𝑇), 𝑥 ∈ R𝑑 , 𝛽 = 𝛼
2 −

(1−𝛼) (𝑝−2)
2𝑝 . It holds that

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}




(Ŭ𝑁,𝑀 (𝑡, 𝑥) − ŭ(𝑡, 𝑥)
)
𝜈





𝐿2
≤ 𝐸(𝑀, 𝑁) ·

(
𝐶𝐹 𝑒(�̂�)

)
, (79)
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where

𝐸(𝑀, 𝑁) =

[
𝑒
(
𝑝𝑁

2 + 1
)] 1

8 (2𝐶)𝑁−1 exp
(
𝛽𝑀

1
2𝛽

)
√
𝑀𝑁−1

. (80)

Proof. Under assumptions 2 and 7, combined with integrability argument in (Hutzenthaler et al.,
2021, Lemma 3.3), the proof of (Hutzenthaler et al., 2021, Proposition 3.5) holds. Setting 𝑛 = 𝑁 in
this proposition, for all 𝜈 ∈ {1, . . . , 𝑑 + 1}, we have


(Ŭ𝑁,𝑀 (𝑡, 𝑥) − ŭ(𝑡, 𝑥)

)
𝜈





𝐿2
≤𝐸(𝑀, 𝑁) ·

{
𝜎
√︁

max{𝑇 − 𝑡, 3}∥ �̆�∥1√
𝑀

(81)

+
𝐶 sup𝑠∈[𝑡,𝑇 ) ∥ 𝐹(0𝑑+1) (𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)∥

𝐿
2𝑝
𝑝−2

2
√
𝑀

(82)

+
𝐶 sup𝑠∈[𝑡,𝑇 ) , 𝜈∈{1,...,𝑑+1} ∥ŭ(𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)𝜈∥

𝐿
2𝑝
𝑝−2

2

}
. (83)

Take sup(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑 max𝜈∈{1,...,𝑑+1} for the LHS, and note that the RHS does not depend on 𝜈,
we get

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}




(Ŭ𝑁,𝑀 (𝑡, 𝑥) − ŭ(𝑡, 𝑥)
)
𝜈





𝐿2

(84)

≤𝐸(𝑀, 𝑁) · sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

{
𝜎
√︁

max{𝑇 − 𝑡, 3}∥ �̆�∥1√
𝑀

(85)

+
𝐶 sup𝑠∈[𝑡,𝑇 ) ∥ 𝐹(0𝑑+1) (𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)∥

𝐿
2𝑝
𝑝−2

2
√
𝑀

(86)

+
𝐶 sup𝑠∈[𝑡,𝑇 ) , 𝜈∈{1,...,𝑑+1} ∥ŭ(𝑠, 𝑥 + 𝜎𝑊𝑠 − 𝜎𝑊𝑡)𝜈∥

𝐿
2𝑝
𝑝−2

2

}
. (87)

Substituting the sup term in 84 by Lemma 3 immediately yields the stated result. □

In practice, a common choice for 𝑀 is ⌊𝑁2𝛽𝑁⌋. Plugging it in 5, we get the error order of the
solver w.r.t. 𝑁:

Corollary 5 (Error Order for 𝑀 = ⌊𝑁2𝛽𝑁⌋). Under assumptions 5, 6, 2 and 1 , suppose 𝑝 ⩾ 2,
𝛼 ∈ ( 𝑝−2

2(𝑝−1) ,
𝑝

2(𝑝−1) ), 𝑡 ∈ [0,𝑇), 𝑥 ∈ R𝑑 , 𝛽 = 𝛼
2 −

(1−𝛼) (𝑝−2)
2𝑝 . It holds that

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}




(Ŭ𝑁,𝑀 (𝑡, 𝑥) − ŭ(𝑡, 𝑥)
)
𝜈





𝐿2
≤ exp

(
𝑁 log 𝑁

(
−𝛽 + 𝑜(1)

) )
·
(
𝐶𝐹 𝑒(�̂�)

)
. (88)

Proof. First, we rewrite 𝐸(𝑀, 𝑁) in 4 as exponential form:

𝐸(𝑀, 𝑁) =

[
𝑒
(
𝑝𝑁

2 + 1
)] 1

8 (2𝐶)𝑁−1 exp
(
𝛽𝑀

1
2𝛽

)
√
𝑀𝑁−1

(89)

= exp
(
𝑜(𝑁) + 𝑁 log(2𝐶) + 𝛽𝑀1/2𝛽 − 𝑁 − 1

2
log 𝑀

)
(90)
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Note that ⌊𝑁2𝛽𝑁⌋ ⩽ 𝑁2𝛽𝑁 and that 𝑀 = ⌊𝑁2𝛽𝑁⌋ ⇒ log 𝑀 ⩾ log(𝑁2𝛽𝑁 − 1) ⩾ log(𝑁2𝛽𝑁) − 1 =

2𝛽 log 𝑁 − 1 for 𝑁 ⩾ 21/2𝛽 . We can simplify 89 to

exp
(
𝑜(𝑁) + 𝑁 log(2𝐶) + 𝛽𝑀1/2𝛽 − 𝑁 − 1

2
log 𝑀

)
(91)

⩽ exp
(
𝑜(𝑁) + 𝑁 log(2𝐶) + 𝛽𝑁 − 𝑁 − 1

2
(2𝛽 log 𝑁 − 1)

)
(92)

= exp
(
𝑁 (𝑜(1) + log(2𝐶) + 𝛽 − 1

2
(2𝛽 log 𝑁 − 1))

)
(93)

= exp
(
𝑁 log 𝑁 (−𝛽 + 𝑜(1))

)
. (94)

Plugging 91 to the conclusion of 4, we get the result we want. □

Corollary 6 (Improved Scaling Law for 𝑀 = ⌊𝑁2𝛽𝑁⌋). Under Assumptions 5, 6, 2 and 1, suppose that
𝑝 ⩾ 2, 𝛼 ∈

(
𝑝−2

2(𝑝−1) ,
𝑝

2(𝑝−1)

)
, 𝑡 ∈ [0,𝑇), 𝑥 ∈ R𝑑 , and define 𝛽 = 𝛼

2 −
(1−𝛼) (𝑝−2)

2𝑝 . Assume that the error at
(𝑡, 𝑥) of the surrogate model decays polynomially with respect to the number of training points; namely,
𝑒(�̂�) = 𝑂(𝑚−𝛾), for some 𝛾 > 0. Suppose further that 𝑚 = (𝑑 + 1)5𝑁 𝑁2𝛽𝑁 . Then, for all sufficiently large
𝑚, the SCaSML procedure improves the error bound from 𝑂(𝑚−𝛾) to 𝑂

(
𝑚−𝛾−

1
2+𝑜(1)

)
with same points

number.

Proof. In what follows, we adopt the notation 𝑓 (𝑚) ∼ 𝑔(𝑚) to signify that lim𝑚→∞
𝑓 (𝑚)
𝑔 (𝑚) = 1. Since

𝑚 is a continuous and strictly increasing function of 𝑁, there exists a unique inverse function
𝑁 = 𝑁 (𝑚). Taking logarithms, we obtain log𝑚 = log(𝑑 + 1) + 𝑁 (𝑚) log 5 + 2𝛽 𝑁 (𝑚) log 𝑁 (𝑚)
which follows immediately that log𝑚 ∼ 2𝛽 𝑁 (𝑚) log 𝑁 (𝑚)

Define

𝑧 =
log𝑚

2𝛽
−

log(𝑑 + 1) + 𝑁 (𝑚) log 5
2𝛽

and set 𝑥 = log 𝑁, so that the relation 𝑥 𝑒𝑥 = 𝑧 holds. The inverse of this equation is given by the
Lambert 𝑊 function, i.e., 𝑥 =𝑊 (𝑧). Therefore,

𝑁 (𝑚) = 𝑒𝑥 = 𝑒𝑊 (𝑧) =
𝑧

𝑊 (𝑧) =
log𝑚

2𝛽 −
log(𝑑+1)+𝑁 (𝑚) log 5

2𝛽

𝑊
(

log𝑚
2𝛽 −

log(𝑑+1)+𝑁 (𝑚) log 5
2𝛽

) .

Since 𝑊 (𝑧) ∼ log 𝑧 − log log 𝑧, we can deduce that 𝑁 (𝑚) ∼
log𝑚

2𝛽
log(log𝑚) =

log𝑚
2𝛽 log log𝑚 . Equivalently,

𝑁 (𝑚) = log𝑚
2𝛽 log log𝑚 + 𝑜

(
log𝑚

2𝛽 log log𝑚

)
.

In contrast to the surrogate model, which uses all 𝑚 points to achieve an error of 𝑂(𝑚−𝛾),
the SCaSML method allocates 5𝑁 𝑁2𝛽𝑁 points for training and 𝑑5𝑁 𝑁2𝛽𝑁 points for inference (see

Footnote 7), thereby yielding an error bound of the form 𝑂
(
𝑁 log 𝑁

(
−𝛽 + 𝑜(1)

)
(5𝑁 𝑁2𝛽𝑁)−𝛾

)
=
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𝑂
(
𝑁−𝛽𝑁 (1+𝑜(1) ) 𝑚−𝛾

)
. Substituting the asymptotic expression for 𝑁 (𝑚), and noting that

𝑁 (𝑚)−𝛽𝑁 (𝑚) =
√
𝑑 + 1 exp( log 5

2 𝑁 (𝑚))
√
𝑚

=
√
𝑑 + 1 exp(

log 5
2

log𝑚( 𝑁 (𝑚)
log𝑚

− 1
log 5

))

=
√
𝑑 + 1 exp(

log 5
2

log𝑚(− 1
log 5

+ 𝑜( 1
log log𝑚

)))

=
√
𝑑 + 1 exp(−(1

2
− 𝑜( 1

log log𝑚
)) log𝑚)

=
√
𝑑 + 1𝑚−

1
2+𝑜(

1
log log𝑚 ) = 𝑂(𝑚−

1
2+𝑜(

1
log log𝑚 ) ).

We obtain the SCaSML error bound 𝑂
(
𝑚−𝛾 𝑚

(− 1
2+𝑜(

1
log log𝑚 ) ) (1+𝑜(1) )

)
= 𝑂

(
𝑚−𝛾−

1
2+𝑜(1)

)
. Hence,

for high-dimensional problems where 𝑚 ≫ 1 and for any fixed 𝛾 > 0, we conclude that

𝑂
(
𝑚−𝛾−

1
2+𝑜(1)

)
≪ 𝑂

(
𝑚−𝛾

)
, thereby demonstrating that the SCaSML procedure attains a strictly

faster rate of convergence. □

Corollary 7 (Error Order for 𝑀 = ⌊𝑁2𝛽𝑁⌋). Under Assumptions 1, 2, 5 and 6 , suppose 𝑝 ⩾ 2,
𝛼 ∈ ( 𝑝−2

2(𝑝−1) ,
𝑝

2(𝑝−1) ), 𝑡 ∈ [0,𝑇), 𝑥 ∈ R𝑑 , 𝛽 = 𝛼
2 −

(1−𝛼) (𝑝−2)
2𝑝 . It holds that

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}




(Ŭ𝑁,⌊𝑁2𝛽𝑁 ⌋ (𝑡, 𝑥) − ŭ(𝑡, 𝑥)
)
𝜈





𝐿2
≤ exp

(
𝑁 log 𝑁

(
−𝛽 + 𝑜(1)

) )
·
(
𝐶𝐹 𝑒(�̂�)

)
. (95)

Specifically, this approximator Ŭ𝑁,⌊𝑁2𝛽𝑁 ⌋ requires at most 𝑑(5⌊𝑁2𝛽𝑁⌋)𝑁 points for evaluation, as detailed
in (Hutzenthaler et al., 2020a, Lemma 3.6).

F.2.2. Bound on Computational Complexity

We now define two indicators to quantify the computational complexity of full-history SCaSML:the
number of realization variables (RV) and the number of function evaluations (FE).

Definition 8 (Computational Complexity of full-history SCaSML). We define the following com-
plexity:

• Let {RV𝑛,𝑀}𝑛,𝑀∈Z ⊂ N satisfy RV0,𝑀 = 0 and, for all 𝑛, 𝑀 ∈ N,

RV𝑛,𝑀 ≤ 𝑑 𝑀𝑛 +
𝑛−1∑︁
𝑙=0

[
𝑀𝑛−𝑙

(
1 + 𝑑 +RV𝑙,𝑀 +1N(𝑙) RV𝑙−1,𝑀

)]
. (96)

This quantity captures the number of scalar normal and uniform time realizations required to
compute one sample of Ŭ𝑛,𝑀 (𝑠, 𝑥).

• Let {FE𝑛,𝑀}𝑛,𝑀∈Z ⊂ N satisfy FE0,𝑀 = 0 and, for all 𝑛, 𝑀 ∈ N,

FE𝑛,𝑀 ≤ 𝑀𝑛 +
𝑛−1∑︁
𝑙=0

[
𝑀𝑛−𝑙

(
1 + FE𝑙,𝑀 +1N(𝑙) + 1N(𝑙) FE𝑙−1,𝑀

)]
. (97)

This reflects the number of evaluations of 𝐹 and �̆� required to compute one sample of Ŭ𝑛,𝑀 (𝑠, 𝑥).
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Theorem 9 (Computational Complexity of full-history SCaSML). Under assumptions 5, 6, 2 and 1
, suppose 𝑝 ⩾ 2, 𝛼 ∈ ( 𝑝−2

2(𝑝−1) ,
𝑝

2(𝑝−1) ) and 𝛽 = 𝛼
2 −

(1−𝛼) (𝑝−2)
2𝑝 ∈ (0, 𝛼2 ). For any 𝑁 ⩾ 2 and 𝛿 > 0, taking

𝑀 = ⌊𝑁2𝛽𝑁⌋, we have

RV𝑁,𝑀 +FE𝑁,𝑀 ⩽ exp

(
𝑁 log 𝑁

(
− 𝛽𝛿 + 𝑜(1)

))
(𝑑 + 1) (𝐶𝐹𝑒(�̂�))2+𝛿

[
sup

(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑀 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

]−(2+𝛿)
.

(98)

Proof. From (Hutzenthaler et al., 2020a, Lemma 3.6), we derive that

RV𝑁,𝑀 ⩽ 𝑑(5𝑀)𝑁 , FE𝑁,𝑀 ⩽ (5𝑀)𝑁 . (99)

Suppose the maximum error is 𝜀. To compensate for the (5𝑀)𝑁 term in the complexity by the
denominator of Theorem 4, we multiply the complexity by 𝜀2+𝛿 and then divide it, and put
everything into the exponent:

RV𝑁,𝑀 +FE𝑁,𝑀 (100)

⩽(𝑑 + 1) (5𝑀)𝑁 (101)

=(𝑑 + 1) (5𝑀)𝑁𝜀2+𝛿𝜀−(2+𝛿) (102)

⩽
[ [
𝑒

(
𝑝𝑁

2 +1
)] 1

8
(2𝐶)𝑁−1 exp

(
𝛽𝑀

1
2𝛽

)
√
𝑀𝑁−1

]2+𝛿
(𝐶𝐹𝑒(�̂�))2+𝛿(𝑑 + 1) (5𝑀)𝑁 (103)[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑀 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

]−(2+𝛿)
(104)

= exp

(
𝑁

(
(2 + 𝛿) log(2𝐶) + log 5

)
+ (2 + 𝛿)𝛽𝑀1/2𝛽 + log 𝑀 − 𝛿

2
(𝑁 − 1) log 𝑀 + 𝑜(𝑁)

)
(105)

(𝑑 + 1) (𝐶𝐹𝑒(�̂�))2+𝛿
[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑀 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

]−(2+𝛿)
(106)

= exp

(
𝑁

(
(2 + 𝛿) log(2𝐶) + log 5 + (2 + 𝛿)𝛽

𝑁
𝑀1/2𝛽 − (𝛿

2
− 2 + 𝛿

2𝑁
) log 𝑀 + 𝑜(1)

))
(107)

(𝑑 + 1) (𝐶𝐹𝑒(�̂�))2+𝛿
[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑀 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

]−(2+𝛿)
(108)

⩽ exp

(
𝑁

(
(2 + 𝛿) log(2𝐶) + log 5 + (2 + 𝛿)𝛽

𝑁
𝑀1/2𝛽 − (𝛿

2
− 2 + 𝛿

2𝑁
) log 𝑀 + 𝑜(1)

))
(109)

(𝑑 + 1) (𝐶𝐹𝑒(�̂�))2+𝛿
[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑀 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

]−(2+𝛿)
(110)
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Note that ⌊𝑁2𝛽𝑁⌋1/2𝛽 ⩽ 𝑁 and 𝛽 < 𝛼
2 , thus (2+𝛿)𝛽

𝑁
𝑀1/2𝛽 ⩽ (2 + 𝛿)𝛽 ⩽ 𝛼(1 + 𝛿

2 ). Therefore, by 100:

exp

(
𝑁

(
(2 + 𝛿) log(2𝐶) + log 5 + (2 + 𝛿)𝛽

𝑁
𝑀1/2𝛽 − (𝛿

2
− 2 + 𝛿

2𝑁
) log 𝑀 + 𝑜(1)

))
(111)

(𝑑 + 1) (𝐶𝐹𝑒(�̂�))2+𝛿
[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑀 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

]−(2+𝛿)
(112)

⩽ exp

(
𝑁

(
(2 + 𝛿) log(2𝐶) + log 5 + 𝛼(1 + 𝛿

2
) − (𝛿

2
− 2 + 𝛿

2𝑁
) log 𝑀 + 𝑜(1)

))
(113)

(𝑑 + 1) (𝐶𝐹𝑒(�̂�))2+𝛿
[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑀 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

]−(2+𝛿)
. (114)

Since 𝑀 = ⌊𝑁2𝛽𝑁⌋ ⇒ log 𝑀 ⩾ log(𝑁2𝛽𝑁 − 1) ⩾ log(𝑁2𝛽𝑁) − 1 = 2𝛽 log 𝑁 − 1 for 𝑁 ⩾ 21/2𝛽, we can
further reduce 111 to:

exp

(
𝑁

(
(2 + 𝛿) log(2𝐶) + log 5 + 𝛼(1 + 𝛿

2
) − (𝛿

2
− 2 + 𝛿

2𝑁
) log 𝑀 + 𝑜(1)

))
(115)

(𝑑 + 1) (𝐶𝐹𝑒(�̂�))2+𝛿
[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑀 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

]−(2+𝛿)
(116)

⩽ exp

(
𝑁

(
(2 + 𝛿) log(2𝐶) + log 5 + 𝛼(1 + 𝛿

2
) + (𝛿

2
− 2 + 𝛿

2𝑁
) − (𝛿

2
− 2 + 𝛿

2𝑁
) · 2𝛽 log 𝑁 + 𝑜(1)

))
(117)

(𝑑 + 1) (𝐶𝐹𝑒(�̂�))2+𝛿
[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑀 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

]−(2+𝛿)
(118)

= exp

(
𝑁 log 𝑁

(
− 𝛽𝛿 + 𝑜(1)

))
(119)

(𝑑 + 1) (𝐶𝐹𝑒(�̂�))2+𝛿
[

sup
(𝑡,𝑥 ) ∈ [0,𝑇 ]×R𝑑

max
𝜈∈{1,...,𝑑+1}



(Ũ𝑁,𝑀 (𝑡, 𝑥) − u∞(𝑡, 𝑥)
)
𝜈




𝐿2

]−(2+𝛿)
. (120)

The right-hand side of this expression is clearly decreasing for large enough 𝑁, and in turn,
finite. Hence, quadrature SCaSML boosts a quadrature MLP with complexity 𝑂(𝑑𝜀−(2+𝛿) ) to a
corresponding physics-informed inference solver with complexity 𝑂(𝑑𝑒(�̂�)2+𝛿𝜀−(2+𝛿) ). □

G. Auxiliary Experiments results

G.1. Violin Plot for Error distribution

In this section, we present violin plots of the absolute error distributions for the base surrogate
model , the MLP, and the SCaSML method. We uniformly select the test points. By combining
kernel density estimation with boxplot-style summaries, these plots capture both the spread
and central tendency of the errors. A violin plot exposes the full distribution—its density,
variability, skewness, and outliers—offering much deeper insight into model performance. The
width of each violin at a given error level reflects the density of the observations. The results
indicate that SCaSML reduces the largest absolute error, lowers the median and produces more
accurate points for a majority of equations compared to the surrogate and MLP, demonstrating
its robustness across different dimensions and equations.
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(a) 𝑑 = 10
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(c) 𝑑 = 30
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(d) 𝑑 = 60

Figure 4 | Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray),
applying qudrature SCaSML (teal) to calibrate the PINN surrogate on linear convection-diffusion
equation for 𝑑 = 10, 20, 30, 60.
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(a) SCaSML using Quadrature MLP
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(b) SCaSML using full-history MLP

Figure 5 | Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray),
applying qudrature SCaSML (teal) to calibrate the PINN surrogate on viscous Burgers’ equation
equation for 𝑑 = 10, 20, 30, 60.

G.2. Inference Time Scaling Curve

In this section, we illustrate how SCaSML enhances estimation accuracy as the number of
inference-time collocation points increases, as outlined in 2.1 and 3.2. Our findings indicate that
allocating additional computational resources during inference consistently improves estimation
accuracy.

G.3. Improved Scaling Law of SCaSML Algorithms

In this section, we consider the viscous Burgers equation as an illustrative example to demon-
strate the improved convergence of SCaSML algorithms, as suggested by Corollary 6.

We implemented a physics-informed neural network (PINN) with five hidden layers, each
containing 50 neurons and employing hyperbolic tangent activation functions. Because the
number of training points, 𝑚, is proportional to the number of iterations in the PINN, the
control group was trained using the Adam optimizer (learning rate 7 × 10−4, 𝛽1 = 0.9, 𝛽2 =

0.99) over iterations set to 400, 2 000, 4 000, 6 000, 8 000, and 10 000 (as illustrated along the
𝑥-axis). The dataset comprised 2 500 interior points, 100 boundary points, and 160 initial points
uniformly sampled from [0, 0.5] × [−0.5, 0.5]𝑑 , ensuring that 𝑚 ≫ 1. To replicate the conditions
of Corollary 6, the SCaSML group was trained over iterations set to ⌊400/(𝑑 + 1)⌋, ⌊2 000/(𝑑 + 1)⌋,
⌊1 000/(𝑑 + 1)⌋, ⌊6 000/(𝑑 + 1)⌋, ⌊8 000/(𝑑 + 1)⌋, and ⌊10 000/(𝑑 + 1)⌋. In addition, we set the
inference level as 𝑁 = ⌊log𝑚/(2𝛽 log log𝑚)⌋ with 𝛽 = 1/2. Theoretically, SCaSML exhibits an
improvement in 𝛾 of 1

2 + 𝑜(1) relative to the control group.

For the Gaussian process regression surrogate model, training was performed over 20
iterations using Newton’s method. Due to the increasing inference parameters with 𝑚 and the
consequent GPU memory constraints, it was not possible to replicate the conditions of Corollary
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(a) SCaSML using Quadrature MLP
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(b) SCaSML using full-history MLP

Figure 6 | Violin Plot for comparison of the baseline Gaussian Process surrogate (black), MLP
(gray), applying qudrature SCaSML (teal) to calibrate the Gaussian Process surrogate on viscous
Burgers’ equation equation for 𝑑 = 20, 40, 60, 80.
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(a) SCaSML using full-history MLP

Figure 7 | Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray),
applying qudrature SCaSML (teal) to calibrate the PINN surrogate on LQG control problem for
𝑑 = 100, 120, 140, 160.
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(a) SCaSML using full-history MLP

Figure 8 | Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray),
applying qudrature SCaSML (teal) to calibrate the PINN surrogate on diffusion reaction equation
for 𝑑 = 100, 120, 140, 160.

6 exactly for the Gaussian process model. Consequently, both the control and SCaSML groups
employed identical training sizes, which theoretically does not alter the asymptopic convergence
rate(i.e. the slope). Specifically, the training data consisted of the following pairs of interior
and boundary points:(100, 20), (200, 40), (300, 60), (400, 80), (500, 100), (600, 120), (700, 140),
(800, 160), (900, 180), and (1 000, 200), with the 𝑥-axis representing the total number of training
points. Again, the inference level was chosen as 𝑁 = ⌊log𝑚/(2𝛽 log log𝑚)⌋ with 𝛽 = 1/2, and
the SCaSML continues to exhibit an improvement in 𝛾 of 1

2 + 𝑜(1) relative to the control group.

We observe that, for the PINNs, full-history SCaSML achieves near-monotonic error re-
duction across resolutions (with 𝑑 ranging from 20 to 80), outperforming quadrature SCaSML,
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Figure 9 | For the linear convection-diffusion equation, SCaSML for PINNs reliably enhances
performance with increased computational resources. Notably, scaling effects are more pro-
nounced in lower dimensions, potentially due to the MLP’s convergence rate exhibiting a linear
dependency on the dimensionality 𝑑.
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(b) 𝑑 = 40
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(d) 𝑑 = 80

Figure 10 | For the viscous Burgers equation, SCaSML with PINN consistently improves perfor-
mance as the sample size 𝑀 increases exponentially.
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(c) 𝑑 = 140

102 103

Evaluation Numbers

26

27

28

29

30

31

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(d) 𝑑 = 160

Figure 11 | For the HJB equation, SCaSML with PINN consistently enhances performance with
increases in the exponential base of the sample size 𝑀. However, the scaling curve plateaus at
𝑀 = 14, likely due to the relatively small clipping range of SCaSML compared to the solution
magnitude. In general, a larger clipping threshold permits more outliers, thereby requiring
additional samples to mitigate variance and ultimately enhancing accuracy; this trade-off must
be considered in light of available computational resources.

which displays oscillatory behavior at higher dimensions. The Gaussian process-based SCaSML
similarly accelerates convergence during training. In both cases, the error trajectories gener-
ated by SCaSML are generally shifted downward relative to the base models, underscoring
its capacity to enhance accuracy without altering the fundamental training dynamics. These
findings underscore SCaSML’s robustness in diverse settings, ensuring reliable convergence
even in high-dimensional or non-monotonic scenarios.
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(b) 𝑑 = 120
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(c) 𝑑 = 140
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Figure 12 | For the Diffusion Reaction equation, SCaSML with PINN consistently improves
performance as the exponential base of the sample size 𝑀 increases.
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(c) 𝑑 = 60
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Figure 13 |We apply quadrature SCaSML to calibrate a PINN surrogate for the 𝑑-dimensional
viscous Burgers equation. All plots employ logarithmic scales on both axes, and the slope 𝛾

denotes the polynomial convergence rate. Numerical results demonstrate that, when collocation
points for testing and inference are increased simultaneously, SCaSML achieves a faster scaling
law than the base surrogate model.
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(c) 𝑑 = 60
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Figure 14 |We apply full-history SCaSML to calibrate a PINN surrogate for the 𝑑-dimensional
viscous Burgers equation. All plots employ logarithmic scales on both axes, and the slope 𝛾

denotes the polynomial convergence rate. Numerical results demonstrate that, when collocation
points for testing and inference are increased simultaneously, SCaSML achieves a faster scaling
law than the base surrogate model.
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(a) 𝑑 = 20
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(b) 𝑑 = 40
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(c) 𝑑 = 60
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Figure 15 | We apply quadrature SCaSML to calibrate a Gaussian Process surrogate for the
𝑑-dimensional viscous Burgers equation. All plots employ logarithmic scales on both axes, and
the slope 𝛾 denotes the polynomial convergence rate. Numerical results demonstrate that, when
collocation points for testing and inference are increased simultaneously, SCaSML achieves a
faster scaling law than the base surrogate model.
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(a) 𝑑 = 20
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Figure 16 | We apply full-history SCaSML to calibrate a Gaussian Process surrogate for the
𝑑-dimensional viscous Burgers equation. All plots employ logarithmic scales on both axes, and
the slope 𝛾 denotes the polynomial convergence rate. Numerical results demonstrate that, when
collocation points for testing and inference are increased simultaneously, SCaSML achieves a
faster scaling law than the base surrogate model.
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