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Abstract

This paper aims to develop a comprehensive method for integrating generative flow networks (GFlowNet)
into reinforcement learning (RL) for stochastic control issues. Our primary goal is to use GFlowNet to
mitigate the impact of terminal cost during the initial phases of RL training, a process we term "flow cal-
ibration." Specifically, we concentrate on creating a flow-calibrated soft actor-critic (SAC) algorithm to
address the transition path sampling (TPS) problem, which focuses on sampling rare transitions between
two metastable states. TPS can be framed as a stochastic control problem and is generally challenging
to train with traditional RL techniques in high-dimensional spaces due to the significant influence of
terminal cost. Furthermore, to prevent discretization errors, we propose a continuous-time formulation
of SAC and GFlowNet, grounded in the stochastic optimal control matching and Girsanov theorem. The
central element linking the two models is the quantization strategy, and we also employ principal bundle
theory to further utilize physics informations. Numerical results of generated transition paths for the
Müller potential and Alanine dipeptide validate the effectiveness of these methods in both data-rich and
data-scarce scenarios.

Keywords stochastic optimal control, reinforcement learning, generative flow network, transition path
sampling, rare event sampling

1 Introduction
Rare event sampling constitutes a multidisciplinary field with applications spanning finance [14], molecular
dynamics[31] , and beyond. These rare events often arise due to the metastable behavior exhibited by the
dynamical systems of interest. Metastability implies that the system remains confined to specific closed
regions of its state space for extended periods, rarely making transitions to other closed regions. Precise
sampling of these rare events necessitates a deep understanding of this transition behavior.

Remarkably, the average waiting time for a rare event significantly exceeds the intrinsic timescale of the
underlying process. This phenomenon commonly manifests itself in dynamical systems governed by Langevin
dynamics and navigating potentials with multiple minima. In such scenarios, the metastable closed regions
align with local minima in the potential landscape. These minima are separated by energy barriers, and
the transitions between them carry crucial information such as the macroscopic properties of the studied
molecules. Furthermore, empirical evidence confirms that the time required to overcome these barriers scales
exponentially with their height [4]. From a sampling perspective, the variance of Monte Carlo estimators
associated with these rare transitions tends to be very high.

Many efforts have been devoted to the two issues presented above. The most notable methods can be
classified into two groups[24]:

• Splitting Method: This idea involves breaking down a rare event into a series of moderately rare
events, making it more tractable to sample. If only the transition between to local minima points is
concerned, this procedure can be achieved adaptively using Adaptive Multilevel Splitting algorithm,
which concurrently evolves an ensemble of trajectories and eliminates those who lags behind, whilst
replicates that successfully explore the paths towards the target states; see [8, 2, 6, 7].
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• Importance Sampling: This method biases the dynamics(e.g. modifying the potential) to reduce
the variance, as detailed in [13, 5] and [23, Section 6.2]. If both the starting point and the target point
are given, one can formulate the problem as a Schrodinger Bridge Matching problem[17] or it can be
solved via an OT scheme[11]. However, to cope with more general transtions between two metastable
states where the target point is not given, one may need to choose from adapting Stochastic Optimal
Control formulation[40](fixed starting point) , approximating the target distribution(unknown) via
a neural network[36](need sample paths) or sampling in a latent space [30] by means of Boltzmann
generator(very slow). To our knowledge, none of the aforementioned methods can efficiently deal with
transitions between metastable states, which are essentially two closed regions without conditioning
on either the starting point or target point.

As a fundamental machine learning paradigm with notable achievements in complex, high-dimensional tasks
such as Go [34, 35], recent initiatives have explored addressing classical Stochastic Optimal Control chal-
lenges, including the aforementioned one[24, 18], through a reinforcement learning (RL) lens, and is notably
benefits large-scale Markov Decision Processes where traditional methods like dynamic programming are
not viable. Yet, existing studies are either missing comprehensive theoretical backing [18] or are limited to
discrete-time frameworks [32], both posing risks of errors in outcomes. Beyond issues of discretization, RL
tends to produce a unimodal target, even when entropy regularization is employed [22]. This could lead to
the accumulation of target points at local minima when a standard approximation of terminal costs is used.
On the contrary, GFlowNet[3], a well-celebrated amortize sampler, is capable of generating multimodal ones,
and this capability has been verified in various scenarios[19, 41]. Furthermore, when the search space is large
and the time horizon is long, RL algorithms may require an extended period to converge, as only the final
step’s update incorporates terminal costs. This classic dilemma of exploration-exploitation is always a core
topic in RL research, such as [37, 33]. In comparison, GFlowNet equipped with trajectory balance loss[28]
transmits the feedback of terminal cost to early sampling steps on each training step.

To address these challenges, we undertake the following steps: Initially, leveraging a ready-made the-
oretical result from transition path theory[15], we develop a novel formulation suitable for creating path-
ways between two metastable states, specifically from a known initial distribution to an unspecified target
distribution, instead of merely from point-to-point or point-to-distribution. Subsequently, we introduce
continuous-time versions of SAC and GFlowNet, with their sampling policies represented by parameterized
SDEs, utilizing the stochastic optimal control matching[10] and Girsanov theorem respectively to eliminate
discretization errors. To resolve the exploration-exploitation trade-off, we introduce a ’flow calibration’
strategy that merges the immediate feedback benefits of RL with the foresight of GFlowNet, grounded by
a quantization scheme, and further incorporates physics information via principal bundle theory, utilizing
the idea from equivariant flow matching[21]. Notably, while our focus is on the TPS problem setting, our
approaches are readily adaptable to broader SOC issues, a topic we will revisit in the discussion section.

Following this thread, the paper is structured as follows. In Section 2 we set the stage of rare event
simulation, present the transition path sampling problem in section 2.1 and derive its stochastic optimal
control formulation for distribution to distribution case in 2.2. Section 3 is dedicated to the introduction
of the RL and GFlowNet framework. In Section 3.1, we discuss the underlying theoretical framework of
reinforcement learning in SOC . In Section 3.2 we will briefly recap the key ideas of Soft Actor-Crictic(SAC)
algorithm[16] employed as RL part of our design. As for section 3.3, we introduce the GFlowNet for SOC,
namely CFlowNet[25], under the same frame. Section 4 is devoted to continuous time generalization for
both algorithms. In Section 4.1 we show how to represent the strategy of both algorithms via SDEs. More
precisely, a single forward SDE for SAC and coupled SDEs for GFlowNet. In Section 4.2 we derive the
continuous version of SAC from HJB equations following recent advances in continuous time RL[20]. In
Section 4.3 we analyze the limit of trajectory balance loss[28] and derive its continous time adaptation from
Girsanov theorem. In Section 5, we demonstrate our "physics-informed reparameterization" starting with an
introduction to equivariant flow in 5.1, followed by an exploration of the connection between reparameteri-
zation and variance in 5.2, and finally, we describe our novel reparameterization approach based on principal
bundle theory in 5.3. In Section 6, we provide a brief overview of stochastic quantization in 6.1 and develop
our final strategy using this concept in 6.2, which seamlessly integrates the different representations of SAC
and GFlowNet strategies. In Section 7, we showcase our experimental results, highlighting their superiority
over existing TPS algorithms. Finally, we conclude the paper with a discussion of our findings.
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2 Stochastic Optimal Control for Transition Path Sampling
In this section, we will develop a distribution-to-distribution formulation for transition path sampling prob-
lem. First, we bias the potential landscape, which changes the drift term of SDE representing original
molecule dynamics, to reweigh the sampling process . Second, we show that the distribution to distribution
case can be reduced to the point to distribution case and derive that the bias potential term in point to
distribution case can be solved from a stochastic control problem.

2.1 Bias Potential Method
Following the settings in [36], we will derive the bias potential method for transition path sampling in this
subsection. Notice, that we will assume that Xt always has a fixed starting point in this section.

2.1.1 Definition of Transition Paths

Given probability space (Ω,Σ, ϱ). Suppose V (x) : Rd → R be the potential of the system, Wt(ω) : [0,+∞)×
Ω→ Rd be the d-dimensional Brownian motion w.r.t. measure ϱ. Let two metastable states be represented
by closed closed regions A,B ⊂ Rd. Their respective boundaries are ∂A, ∂B. In studying transition paths,
it is often useful to model the governing system as an SDE. In this section, we will look at the overdamped
Langevin equation, given by

dXt = −∇V (Xt)dt+
√

2βdWt, X0 = x, (1)

where β is the diffusion coefficient. We omit the matrix Id in the SDE above and the same hereafter, if the
context is clear.

Let Ft represent the filtration generated by the process Xt up to time t. Assume the path measure of
Xt is Px, its marginals at stopping time τ being Pxτ respectively.

Assumption 2.1. Assume V is regular enough such that the invariant probability distribution exists

More precisely, if it exists, then it is given by

p(x) = e−β
−1V (x)/Z, Z =

∫
Ω

e−β
−1V (x)dx. (2)

Remark 2.2. In transition path theory(TPT), a commonly seen term is "collcective variable", which are
functions of atomic coordinates used for dimension reduction. The case we considered above is the formulation
under collective variable, because the Langevin dynamics is overdamped and can be represented by one SDE,
instead of a couple of SDEs. In fact, the original Langevin dynamics without collective variable is given by{

dXt = m−1Ptdt

dPt = [−γPt −∇V (Xt)] dt+
√
2γmϵdWt,

(3)

and its invariant probability distribution is given by

ϕ(x, p) = ZHe
−H(x,p)/ϵ, H(x, p) =

p2

2m
+ V (x), ZH =

∫
Ω

e−H(x,p)/ϵdxdp. (4)

It can be shown that this collective-variable-free case also has an SOC formulation[40], and can be solved
via Path Integral Cross Entropy method[17]. There is no inherent difficulty to extend our algorithm to the
collective variable free case, but we will focus on collective variable case for simplicity.

Definition 2.3. The paths that go from the boundary of A to the boundary of B without returning to A are
called transition paths [12]. Mathematically, a realization (Xs)

T
s=0 is a transition path if X0 ∈ ∂A,XT ∈

∂B, and Xs /∈ A ∪B, ∀ s ∈ (0, T ).

2.1.2 Distribution of Transition Paths

We will now examine the distribution of transition paths as in [27].
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Definition 2.4. Given time t, the hitting time of the process Xt w.r.t. filtration F∞ starting at time
s and position x is defined as:

τ
(X)
A := inf{t ≥ s : Xt ∈ A}, (5)

τ
(X)
B := inf{t ≥ s : Xt ∈ B}. (6)

We may omit the superscript (X) sometimes if the context is clear.

Assumption 2.5. For given Xs starting at starting point x, we always assume the system is ergodic, that
is τ (X)

A , τ
(X)
B < +∞.

Remark 2.6. This condition can be slightly relaxed to τ
(X)
A , τ

(X)
B < +∞ almost surely with respect to Px,

the path measure of Xt[36].

From this definition, we introduce a key ingredient for solving TPS problem named committor

Definition 2.7. Let E be the event that τ (X)
B < τ

(X)
A . Given starting point x, the committor is defined as

q(x) := Px(E) (7)

That is, the committor gives the probability that a path starting from a particular point x reaches closed
region B before closed region A.

Definition 2.8. We call a stopping time

τ
(X)
AB := inf{t ≥ 0|Xt ∈ A ∪B} = τ

(X)
A ∧ τ (X)

B (8)

the reactive time of path Xt.

Remark 2.9. From the ergodic assumption, we have τAB < +∞, that is, the reactive time is always finite.

Before we give the SDE of the transition path, we need the following lemma

Lemma 2.10. The committor q is determined by the following boundary value problem
Lq(x) = 0 if x /∈ A ∪B
q(x) = 0 if x ∈ A
q(x) = 1 if x ∈ B

, (9)

where L is the generator of original diffusion(time-homogeneous), given by

L = −∇V (Xt)∇+ β∆ (10)

Proof. Suppose h(x) is a solution of the boundary value problem.
For x ∈ A ∪B, apparently, h coincides with q, which is 1B .
For x ∈ (A ∪B)c, from [29, Theorem 9.2.13], we have

h(x) = EPx [1B(XτAB
)] (11)

= Px(τA < τB) (12)
= Px(E) (13)
= q(x) (14)

Hence, h ≡ q for any x. Refer to [38] for more details.

We claim that

Theorem 2.11. The dynamics of transition paths starting at x is given by

dYt = (−∇V (Yt)− 2β
∇q(Yt)
q(Yt)

)dt+
√

2βdWt, Y0 = x ∈ Ac (15)
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Proof. We will use Doob’s h-transform, a common technique for conditional dynamic to derive the equation.
Define h-function

h(t, x) := P(τ (X)
B < τ

(X)
A |Xt = x) (16)

Denote the generator of transition paths as G(t),i.e.

G(t)f(x) = lim
s→0

1

s

(
E
[
f(Xt+s)|Xt = x, τ

(X)
B < τ

(X)
A

]
− f(x)

)
(17)

= lim
s→0

E[f(Xt+s)h(t+ s,Xt+s)|Xt = x]− f(x)h(t, x)
sh(t, x)

(18)

= lim
s→0

E[f(Xt+s)q(Xt+s)|Xt = x]− f(x)q(x)
sq(x)

(19)

for arbitrary function f . From the definition above, the generator of biased diffusion(can be non-time-
homogeneous in general Doob’s h-transform) is given by

G(t)f =
1

q
(∂t + L)(qf) (20)

=
1

q
L(qf), (21)

because q(x)f(x) apparently does not depend on time in our situation. From previous Lemma 2.10

Lq = 0 (22)

Hence

G(t)f = Lf +
2β∇q
q
· ∇f (23)

which completes our proof. See [9] for more details.

Remark 2.12. In fact, the theorem still holds for x ∈ ∂A, where the committor q vanishes, that is, this
SDE still admits a unique strong solution. See [27, Theorem 1.1] for the proof.

2.2 Solving Bias Potential from Stochastic Optimal Control
In this subsection, we begin with reducing the distribution to distribution case to point to distribution case,
and then derive a SOC formulation from minimal action in optimal transport.

2.2.1 Reduction of initial condition

Consider Overdamped Langevin Dynamics with given initial distribution µ,i.e.

dXt = −∇V (Xt)dt+
√
2βdWt, X0 ∼ µ. (24)

Denote its corresponding path measure as Pµ, and its marginal at stopping time τ as Pµτ .

Definition 2.13. The relative entropy between two measures α, β is given by

Ent(α|β) :=


∫
ς

log

(
dα

dβ

)
dα if α≪ β,

+∞ otherwise,
(25)

for measurable space ς.

The next theorem is related to the Schrodinger Bridge formulation of the general sampling problem,
whose connection with TPS will be discussed later. We will use the proof in [15, Theorem 4.3]

Theorem 2.14. Suppose the strictly convex terminal cost g : Rd → [0,+∞] is Fτ measurable, there exists
a Fτ measurable set D ⊂ dom g,s.t. Pxτ (D) > 0, and that

∫
D
gdPτ < +∞.

Then, the following holds:
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1. The point-to-distribution sampling problem

inf
Q
{EQ[g(Xτ ) + log

dQ
dPx

]|Q ∈ P(Ω)}, (26)

where P(·) are all measures on certain sample space, admits unique optimal path measure Q⋆,x, satis-
fying Q⋆,x0 = µ

2. The distribution-to-distribution sampling problem

inf
Q
{EQ[g(Xτ ) + log

dQ
dPµ

]|Q ∈ P(Ω),Q0 = µ̃}, (27)

where µ̃ ∈ P(Rd) is a given measure(not necessarily equals to µ) with Ent(µ̃|µ) < +∞, has a minimizer
taking the form Q⋆,µ̃ = µ̃⊗Q⋆,x(the definition of ⊗ is in the proof)

Remark 2.15. In our case,µ̃ = µ. It indicates that we only need to solve the measure Q⋆,x for the point-
to-distribution case on one point x. For the distribution-to-distribution case, it suffices to randomize the
starting point x by x ∼ µ and "shoot" with the same conditional measure Q⋆,x.

Proof. We will give a proof for 1 and 2 for completeness.

1. First, we show that the set of admissible path measures is nonempty, that is, there exists at least one
path measure, such that the stochastic control problem in 1 has a finite cost. To construct such a
measure, we reweight the probability of Pxτ to make its support set be D,i.e.

ν :=
1DPxτ
Pxτ (D)

. (28)

Make a path measure Q to have marginal ν at stopping time τ , that is

Q := ν ⊗ Px|Xτ
=

∫
Rd

Px|Xτ=η
dν(η), (29)

where Px|Xτ=η
is measure Px conditioning on Xτ = η.

We claim this measure is admissible, verified as follows

EQ[g(Xτ ) + log
dQ
dPx

] = EQ[g(Xτ ) + log
dQτ
dPxτ

(Xτ )], since it is the only difference between Q and Px

(30)

= Eν [g(x) + log
dν

dPxτ
(x)] (31)

=

∫
Rd

gdν + Ent(ν|Pxτ ), where Ent is the relative entropy (32)

=

∫
D
gdPxτ

Pxτ (D)
− logPxτ (D) (33)

< +∞ (34)

Next, we move to the existence of minimizers by the Direct Method of the Calculus of Variations.

Step one, construct such a candidate minimizer. From previous argument, the minimizing sequence
Qk exists, that is

sup
k≥1

EQk [f(Xτ ) + log
dQk

dPx
] < +∞ (35)

Since f ≥ 0, it implies

sup
k≥1

Ent(Qk|Px) < +∞ (36)

Thus, by de la Vallee Poussin theorem, the sequence (dQ
k

dPx )k≥1 is uniformly integrable. Further, since
the sequence is bounded in L1(Ω,Px), Dunford-Pettis theorem provides that this sequence is also
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convergent weakly in L1(Ω,Px). Denote the weak limit as Z, and let the candidate be Q := ZPx, then
we have convergence Qk setwise→ Q.

Step two, we show that Q is indeed the minimizer we want

EQ[(g ∧ n)(Xτ ) + log
dQ
dPx

] ≤ lim
k→∞

EQk [(g ∧ n)] + lim inf
k→∞

Ent(Q|Px), by lower semi-continuity (37)

≤ lim inf
k→∞

[(g ∧ n)(Xτ ) + log
dQ
dPx

] (38)

≤ lim inf
k→∞

[g(Xτ ) + log
dQ
dPx

]. (39)

Take n→∞. From the monotone convergence theorem, we have

EQ[g(Xτ ) + log
dQ
dPx

] ≤ lim inf
k→∞

EQk [g(Xτ ) + log
dQk

dPx
]. (40)

The uniqueness of the minimizer Q follows directly from the strict convexity of g.

2. Notice that for any Q ∈ P(Ω),Q0 = µ̃ , we have:Q0 ≪ µ(Since Ent(µ̃|µ) < +∞).
Moreover, by disintegration theorem, we have:

dQ
dPµ

(ω) =
dQ0

dPµ0
(X0(ω))

dQ|X0

dPµ|X0

(ω), for Q-almost ω ∈ Ω (41)

This induces the disintegration of relative entropy, which writes:

Ent(Q|Pµ) = Ent(µ̃|µ) +
∫
Rd

Ent(Q|X0=x|P
x)Q0(dx) (42)

The problem now becomes:

Ent(µ̃|µ) + inf
Q
{
∫
Rd

EQ|X0=x
[f(Xτ ) + log

dQ|X0=x

dPx
]µ̃(dx)} (43)

Therefore, if Q⋆,x is the minimizer of the problem conditioning on initial point x, then the optimal
path measure is given by Q⋆,µ̃ = µ̃⊗Q⋆,x

Since the Theorem 2.11 and Remark 2.12 only holds for x ∈ (int A)c, we need to clarify the movement
of the particle starting at a point within A to make the boundary distribution of Yt on ∂A coincides with
the boundary distribution of Xt.

Definition 2.16. Suppose the initial distribution on A is given by ϕ(x). Define reactive exiting dis-
tribution of ∂A as µ := ϕ|∂A. Moreover, define the empirical reactive exiting distribution of ∂A as
µN := 1

N

∑N−1
k=0 δXτA,k

(z), where z ∈ A and k is the label for N iid samples.

Next, we extend the definition of Yt to x ∈ A case simply by

Yt := −∇V (Yt)dt+
√

2βdWt, 0 ≤ t ≤ τA, x ∈ A (44)

The following proposition can justify the definition

Proposition 2.17. µN
weak→ µ as N → +∞,i.e.

lim
N→∞

∫
∂A

f(x)dµN (x) =

∫
∂A

f(x)dµ(x),Px − a.s. (45)

for any continuous bounded function f : ∂A→ R.

Proof. See [27, Proposition 1.4].

This proposition allows us to equalize the hitting distribution of Yt on ∂A with µ. Combining it Theorem
2.14, it suffices to construct SOC formulation for the point-to-distribution case with x ∈ ∂A.
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2.2.2 Deriving SOC formulation

Define terminal cost as follows

g(x) =

{
0, x ∈ B

+∞, otherwise
(46)

Pick sufficiently small ϵ > 0. Generate a starting point x ∈ Ac satisfying d(x, ∂A) < ϵ, such as taking
one more small step without bias after Yt hits the boundary ∂A to go outside the closed region A.

Parameterize the path measure Q by setting it as the law of the following SDE

dYt =
[
−∇V (Yt) + 2βvθF (Yt)

]
dt+

√
2βdWt, Y0 = x ∈ Ac. (47)

Remark 2.18. Different from the next section, we temporarily assume that θ parameterizes vθF , a deter-
ministic mapping from Rd to Rd here.

To apply Girsanov’s theorem to the entropy term above, we need

Assumption 2.19. EQ log dQ
dPx < +∞ ⇐⇒ EQ[

∫ τAB

0
|vθF (Yt)|2dt] < +∞ (Novikov condition, derived from

the following lines),

which gives

EQ[log
dQ
dPx

] = EQ[− log
dPx

dQ
] (48)

= EQ[
1√
2β

∫ τAB

0

vθF (Yt)dW̆t +
1

4β

∫ τAB

0

|vθF (Yt)|2dt] (49)

=
1

4β
EQ

∫ τAB

0

|vθF (Yt)|2dt, (50)

where we denote the Brownian motion w.r.t. Q as W̆t temporarily. Thus the original SOC problem is
equivalent to

inf
θ
EQ[

1

4β

∫ τAB

0

|vθF (Yt)|2dt+ g(YτAB
)|Yt ∼ Q, Y0 = x]. (51)

The next theorem shows that the stochastic optimal control problem presented above gives the transition
path measure

Corollary 2.20. For x ∈ Ac, the optimal control for the problem

inf
θ
EQ[

1

4β

∫ τAB

0

|vθF (Yt)|2dt+ g(YτAB
)|Yt ∼ Q, Y0 = x], (52)

is given by

v⋆,θF (x) = ∇ log q(x) =
∇q(x)
q(x)

. (53)

That is, the optimal path measure for the original problem is the measure of the transition path Yt.

Proof. See [40, Corollary 3.1.1].

Here is a brief summary of the procedure for our sampling

1. Choose a point on ∂A, and take a sufficiently small step following Xt to generate a starting point
x ∈ Ac

2. For this fixed x, solve the SOC problem in corollary 2.20 for v⋆,θF (x)

3. Pick any fixed point xin in int A(normally the local minima)

4. Run the extended dynamic of Yt(namely that of Xt), until the path hits the boundary of A at xhit

5. Use the same SDE of v⋆,θF to shoot from xhit

6. Repeat 4 to 5

Thus, we will focus on solving SOC problem for a fixed starting point in the following sections.
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3 Discretized RL and GFN for Stochastic Optimal Control

3.1 Discretized RL for stochastic optimal control
First, to avoid an infinite time horizon, pick a sufficiently large constant T̃ , and set stopping time T = T̃∧τAB .

Discretize the objective function and the dynamics with time step ∆t

inf
θ

EQ̂

[
1

4β

T−1∑
t=0

∆t|vt|2 + g(YT )|Y0 = x

]
s.t. Yt+∆t = Yt + [−∇V (Yt) + 2βvt] ∆t+

√
2β∆Wt,

where T is the time step when Y1:T−1 ∈ (A ∪B)c ,∆Wt ∼ N (0,∆t), and Q̂ is the discretized adaptation of
path measure Q .

Second, we introduce regular elements in RL problem and clarify some concept in the equation above.
Let the state space S := Rd, the policy space P := {πθF |πθF : Yt ∈ Rd → πθF (·|Yt) ∈ P(Rd)}, namely all

the mixed strategies on Rd(we may choose different parameterized policy space Pθ according to the specific
RL algorithm we use in practice). Denote the selected action at time t to be vt ∈ A = Rd, where A stands
for action space.

Remark 3.1. In fact, due to the deterministic ∇ log q(x), we should have used deterministic action space.
However, in practice, the agent may benefit from training with stochastic strategy when the search space is
very large, such as avoiding suboptimal policies, obtaining more robust learning outcomes, etc, especially for
SAC algorithm[16], which is the case we will be concerned about.

Define the intermediate reward to be r(vt) := 1
4β∆t|vt|

2, and let the terminal reward be g(YT ) . This
formulation allows us to solve the discretized problem with RL, which is Soft Actor-Crictic in our situation.

3.2 Soft Actor Crictic for Discretized SOC Problem
The key features of SAC algorithm are summarized as follows

1. Use entropy regularization to make the agent more explorative

2. Use clipped double Q(s, a) function to avoid overparameterization and overestimation

3. Use Gaussian policy, where the variance term is also parameterized, to make a bigger hypothesis set

Since we focus on continuous cases, we will not give a full introduction to the original SAC algorithm.
Here is a complete pseudo-code implementation of SAC adapted from [1] for the discretized problem

Algorithm 1 Soft Actor-Critic (SAC) algorithm for SOC problem

1: Initialize policy parameters θ, Q-function parameters ϕ1, ϕ2, empty replay buffer D, tradeoff constant
γ, target parameter ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2, and smoothing parameter ρ.

2: repeat
3: Observe state Yt and select action vt from distribution πθF (·|Yt).
4: Execute action vt in the environment.
5: Observe next state Yt+1, reward rt+1, and done signal d to indicate Yt+1 ∈ A ∪B.
6: if d is True then rt+1 = rt+1 − g(Yt+1) and reset the environment state.
7: Store transition (Yt, vt, rt+1, Yt+1, d) in replay buffer D.
8: if it’s time to update then
9: for each gradient step do

10: Randomly sample a batch B of transitions (Yt, vt, rt+1, Yt+1, d) from D.
11: Compute targets for the Q functions
12:

yq = rt + γ(1− d) min
i=1,2

Qϕtarg,i
(Yt+1, vt+1)− γ log πθF (vt+1|Yt+1), vt+1 ∼ πθF (·|Yt+1)

13: Update Q-functions by one step of gradient descent using
14:

∇θi
1

|B|
∑

(Yt,vt,rt+1,Yt+1,d)∈B

(Qϕi(Yt, vt)− yq)
2 , for i ∈ {1, 2}.

9



15: Update policy by one step of gradient ascent using
16:

∇ϕ
1

|B|
∑
Yt∈B

(
min
i=1,2

Qϕi
(Yt, vt)− γ log πθF (vt|Yt)

)
,

17: where the reparametrization trick is used, that is

vt = µθ(Yt) + σθ(Yt) · ξ, ξ ∼ N (0, Id). (54)

18: Update target network

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2 (55)

19: end for
20: end if
21: until convergence

At test time, we will output the mean policy µθ to improve the behavior.

Remark 3.2. Three key issues for the original SAC

1. Discretization error

2. Only consider terminal cost at the final step

3. may not generate very diverse trajectories or target points in sampling applications

3.3 GFlowNet for Discretized SOC Problem
The key difference between GFlowNet and SAC is that it does not directly compute the reward at each
intermediate step, instead, it collects all the reward at the final step and learns to construct consistent
probability flow(both forward and backward) to match the distribution of the final reward, which is better
regarding exploration ability[3] and is particularly suitable for sparse signal RL scenario.

Likewise, since we focus on continuous cases, we will only give the pseudo-code of it based on [25] and
leave more space for continuous case

Remark 3.3. Two key issues for GFN

1. Not very suitable for problems with intermediate cost[25]

2. Trajectory balance is very costly to train since they are evaluated on the entire trajectory at a time
compared to SAC, especially when T is large.

4 Continuous Generalization of SAC and GFN

4.1 Representation of Continuous Strategies via SDEs
4.1.1 Representation of SAC Strategy via Forward SDE

Since the transition dynamic Yt for SAC is already determined vt ∼ πθF (·|Yt), a feedback stochastic control
policy, the SAC strategy can be simply given by

vt = µθ(Yt) + σθ(Yt) · ξ, ξ ∼ N (0,
√
hId) (57)

dYt =
[
−∇V (Yt) + 2βvt

]
dt+

√
2βdWt (58)

where µθ, σθ are some suitable NNs, and h being some suitable discretization step size. The unique strong
solution does exist for arbitrary fixed (vt)

T
t=0 from [39, Chapter 1, Theorem 6.16] under mild assumptions,

as long as we assume g is already approximated by some smooth functions, which is usually the case in
practice[40, 18]. More rigorously, we need to write the variables as vπt , Y πt , but we will stick to the original
notation if the context is clear, for consistency.

Remark 4.1. In this light, we are dealing with a model-based case in TPS problem. However, our method
can be extended to model-free cases without inherent difficulty.
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Algorithm 2 Generative Flow Network (GFlowNet) algorithm for SOC Problem
Initialize: Policy network θ for πθF , a pre-trained retrieval network Υ to find parent, empty buffer D and
P, clip constant ϵ, reward weight λ

repeat
2: Set t = 0, Y0 = x

while Yt ̸= terminal and t < T̃ do
4: Sample M actions vt from action space A according to πθF (·|Yt)

Execute vt in the environment to obtain rt+1 and st+1

6: t = t+ 1
end while

8: Store episodes {(Yt, vt, rt+1, Yt+1)}Tt=1 in replay buffer D
[Optional] Fine-tuning retrieval network GΥ based on D

10: Sample a random batch B of episodes from D
Uniformly sample K actions {vkt }Kk=1 from action space A for each state in B

12: Compute parent states according to {GΥ(Y
k
t , v

k
t )}Kk=1 for each state in B

Update πθF according to

Lθ(τ) =
T∑
t=1

{
log

[
ϵ+

K∑
k=1

Q̂(GΥ(Y
k
t , v

k
t )

vkt→ Y kt )

]

− log

[
ϵ+

K∑
k=1

(Q̂(Y kt
vkt→ Y kt+1) + λ(r(vt)− 1t=T g(YT )))

]}2

, (56)

14: until convergence

4.1.2 Representation of GFlowNet Strategy via coupled SDEs

Next, we will derive the coupled SDE for GFlowNet. Let us establish the theorem for a more general case.
Notice, that all the ∇,∆, div is only taken to the spatial component in the following theorem and its proof.

Theorem 4.2. Suppose we are given a general diffusion process

dXt = f(Xt, t)dt+ σ(Xt, t)dWt. (59)

where f : Rd+1 → Rd+1, σ : Rd+1 → R(d+1)×(d+1). Its time reversal is given by the following equation:

dXt̃ =[f(Xt̃, t̃)− div(σ(Xt̃, t̃)σ
T (Xt̃, t̃)) (60)

− σ(Xt̃, t̃)σ
T (Xt̃, t̃)∇ log p(Xt̃, t̃)]dt̃+ σ(Xt̃, t̃)dW̃t̃. (61)

Here, we denote the time with a negative increment with t̃ and the backward Brownian motion with W̃t̃ .

Proof. Write the forward FPK equation

∂pt
∂t

(Xt, t) = −div
{
f(Xt, t)p(Xt, t)−

1

2
div[σ(Xt, t)σ

T (Xt, t)p(Xt, t)]

}
. (62)

Notice

div[σ(Xt, t)σ
T (Xt, t)p(Xt, t)] (63)

=p(Xt, t)div[σ(Xt, t)σ
T (Xt, t)] + σ(Xt, t)σ

T (Xt, t)∇p(Xt, t) (64)

=p(Xt, t)div[σ(Xt, t)σ
T (Xt, t)] + p(Xt, t)σ(Xt, t)σ

T (Xt, t)∇ log p(Xt, t). (65)

We have
∂p

∂t
(Xt, t) =− div{[f(Xt, t) (66)

− 1

2
div(σ(Xt, t)σ

T (Xt, t)) (67)

− 1

2
σ(Xt, t)σ

T (Xt, t)∇ log p(Xt, t)] · p(Xt, t)}. (68)
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It corresponds to forward ODE

dXt =[f(Xt, t)−
1

2
div(σ(Xt, t)σ

T (Xt, t)) (69)

− 1

2
σ(Xt, t)σ

T (Xt, t)∇ log p(Xt, t)]dt. (70)

It gives the reverse ODE with a positive time increment (t starts from the beginning)

dXt =− [f(Xt, t)−
1

2
div(σ(Xt, t)σ

T (Xt, t)) (71)

− 1

2
σ(Xt, t)σ

T (Xt, t)∇ log p(Xt, t)]dt. (72)

The FPK equation for reverse ODE with a positive time increment is

∂p

∂t
(Xt, t) =− div{−[f(Xt, t)−

1

2
div(σ(Xt, t)σ

T (Xt, t)) (73)

− 1

2
σ(Xt, t)σ

T (Xt, t)∇ log p(Xt, t)] · p(Xt, t)} (74)

=− div{−[f(Xt, t)− div(σ(Xt, t)σ
T (Xt, t)) (75)

− σ(Xt, t)σ
T (Xt, t)∇ log p(Xt, t)] · p(Xt, t)} (76)

+
1

2
∆(σ(Xt, t)σ

T (Xt, t)p(Xt, t)). (77)

Thus, the corresponding SDE with a positive time increment is

dXt =− [f(Xt, t)− div(σ(Xt, t)σ
T (Xt, t)) (78)

− σ(Xt, t)σ
T (Xt, t)∇ log p(Xt, t)]dt+ σ(Xt, t)dWt. (79)

Reverse the time, we have SDE with a negative time increment (t̃ starts from the end)

dXt̃ =[f(Xt̃, t̃)− div(σ(Xt̃, t̃)σ
T (Xt̃, t̃)) (80)

− σ(Xt̃, t̃)σ
T (Xt̃, t̃)∇ log p(Xt̃, t̃)]dt̃+ σ(Xt̃, t̃)dW̃t̃, (81)

as desired.

Unlike SAC, we assume the strategy vt is also evolving in an SDE form, that is

dvt = µθ(Yt)dt+ σθ(Yt)dW̆t, (82)

where W̆t is the noise independent of Wt, µθ : Rd → Rd is the mean strategy and σθ : Rd → R is the noise
level of the strategy.

Remark 4.3. We can choose σθ : Rd → Rd×d if the world model is very complex. However, this is not
likely the case in TPS, since the dynamics are explicitly given. We will only use a parameterized constant to
control the noise level, which, to some extent, presumes an isotropy of the strategy.

We want to derive an explicit reverse SDE system corresponding to{
dYt = [−∇V (Yt) + 2βvt]dt+

√
2βdWt

dvt = µθ(Yt)dt+ σθ(Yt)dW̆t,
(83)

which can be rewritten as

d

(
Yt
vt

)
=

(
−∇V (Yt) + 2βvt

µθ(Yt)

)
dt+

(√
2βId 0
0 σθ(Yt)

)
·
(
dWt

dW̆t

)
. (84)

Applying theorem 4.2, we immediately have

Corollary 4.4. The reverse representation of the system is given by{
dYt̃ = [−∇V (Yt̃) + 2βvt̃ − 2β∇ log p(1)(vt̃, Yt̃, t̃)]dt̃+

√
2βdWt̃

dvt̃ = [µθ(Yt̃)− σθ(Yt̃)∇σθ(Yt̃)− σ2
θ(Yt̃)∇ log p(2)(vt̃, Yt̃, t̃)]dt̃+ σθ(Yt̃)dW̆t̃

, (85)

where ∇ log p(j)(vt̃, Yt̃, t̃), j = 1, 2 stands for jth component of ∇ log p(vt̃, Yt̃, t̃), each of which settles in Rd.
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Proof.

d

(
Yt̃
vt̃

)
= [

(
−∇V (Yt̃) + 2βvt̃

µθ(Yt̃)

)
− (86)

div

(
2β 0
0 σ2

θ(Yt̃)

)
−
(
2β 0
0 σ2

θ(Yt̃)

)
∇ log p(

(
Yt̃
vt̃

)
, t̃)]dt̃ (87)

+

( √
2βdWt̃

σθ(Yt̃)dW̆t̃)

)
(88)

= [

(
−∇V (Yt̃) + 2βvt̃

µθ(Yt̃)

)
− (89)

div

(
2β 0
0 σ2

θ(Yt̃)

)
−
(
2β 0
0 σ2

θ(Yt̃)

)(
∇ log p(1)(vt̃, Yt̃, t̃)
∇ log p(2)(vt̃, Yt̃, t̃)

)
]dt̃ (90)

+

( √
2βdWt̃

σθ(Yt̃)dW̆t̃

)
(91)

=

(
−∇V (Yt̃) + 2βvt̃ − 2β∇ log p(1)(vt̃, Yt̃, t̃)

µθ(Yt̃)− 2σθ(Yt̃)∇σθ(Yt̃)− σ2
θ(Yt̃)∇ log p(2)(vt̃, Yt̃, t̃)

)
dt̃ (92)

+

( √
2βdWt̃

σθ(Yt̃)dW̆t̃

)
, (93)

which completes our proof.

Parameterize ∇ log p(vt̃, Yt̃, t̃) by sϖ(vt̃, Yt̃, t̃), we have{
dYt̃ = [−∇V (Yt̃) + 2βvt̃ − 2βs

(1)
ϖ (vt̃, Yt̃, t̃)]dt̃+

√
2βdWt̃

dvt̃ = [µθ(Yt̃)− 2σθ(Yt̃)∇σθ(Yt̃)− σ2
θ(Yt̃)s

(2)
ϖ (vt̃, Yt̃, t̃)]dt̃+ σθ(Yt̃)dW̆t̃

, (94)

which will be trained by flow matching[26] or trajectory balance[28].

4.2 Continuous Generalization of SAC and GFN
4.2.1 Continuous Generalization of SAC

We derive the continuous generalization of SAC from the framework of q-learning[20], using the HJB equation.
The value function from time t is given by

J(t, y;π) = EH

[ ∫ T

t

[
1

4β
|vs|2 − γ log π(vs|Ys)

]
ds+ g(YT )

∣∣∣∣Yt = y

]
, (95)

where γ is the exploration-exploitation ratio, and EH is taken concerning both Yt and π.
Next, we define Q∆t(t, y, v;π) function as the following

Q∆t(t, y, v;π) = EH[

∫ t+∆t

t

1

4β
|v|2ds+

∫ T

t+∆t

[
1

4β
|vs|2 − γ log π(vs|Y vs )]ds+ g(Y vT )|Y vt = y], (96)

which represents the value of action v lasts ∆t from time t at state y. Here, we use superscript v to indicate
variables perturbed by v.

Taking limit, we have[20, Propostion 3]

Proposition 4.5. The continuous generalization of Q function, namely q function in the literature, is given
by

q(t, y, v;π) := lim
∆t→0

Q∆t(t, y, v;π)− J(t, y;π)
∆t

(97)

=
∂J

∂t
(t, y;π) +H(t, y, v,

∂J

∂y
(t, y;π),

∂2J

∂y2
(t, y;π)), (98)

where H is the Hamiltonian, defined as

H(y, v,p,q) =
[
−∇V (y) + 2βv

]
· p+ β · q+

1

4β
|v|2. (99)
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Proof.

Q∆t(t, y, v;π) =EH[

∫ t+∆t

t

1

4β
|v|2ds+

∫ T

t+∆t

[
1

4β
|vs|2 − γ log π(vs|Y vs )]ds+ g(Y vT )|Y vt = y] (100)

=EH[

∫ t+∆t

t

1

4β
|v|2ds+ EH[

∫ T

t+∆t

[
1

4β
|vs|2 − γ log π(vs|Y vs )]ds+ g(Y vT )|Y vt+∆t]|Y vt = y] (101)

=EQ[

∫ t+∆t

t

1

4β
|v|2ds+ J(t+∆t, Y vt+∆t;π)|Y vt = y] (102)

=EQ[

∫ t+∆t

t

1

4β
|v|2ds+ J(t+∆t, Y vt+∆t;π)− J(t, Y vt ;π)|Y vt = y] + J(t, Y vt ;π) (103)

=EQ[

∫ t+∆t

t

[
∂J

∂t
(s, Y vs ;π) +H(s, Y vs , v,

∂J

∂y
(s, Y vs ;π),

∂2J

∂y2
(s, Y vs ;π))]ds|Y vt = y] + J(t, y;π)

(104)

=J(t, y;π) + [
∂J

∂t
(s, Y vs ;π) +H(s, Y vs , v,

∂J

∂y
(s, Y vs ;π),

∂2J

∂y2
(s, Y vs ;π))]∆t+ o(∆t). (105)

which completes the proof.

The following theorem establishes that the value function J will be improved by minimizing the relative
entropy between π and exp( 1γH)

Theorem 4.6. Given (t, y) ∈ [0, T ]× Rd, if two policies π, π′ ∈P, if

Ent(π′(·|t, y)| exp( 1
γ
H(t, y, ·, ∂J

∂y
(t, y;π),

∂2J

∂y2
(t, y;π)))) ≤ Ent(π(·|t, y)| exp( 1

γ
H(t, y, ·, ∂J

∂y
(t, y;π),

∂2J

∂y2
(t, y;π)))),

(106)

then

J(t, y;π′) ≥ J(t, y;π). (107)

Proof. See [20, Theorem 10].

Remark 4.7. This theorem does not guarantee the policy π to converge to the optimal one π⋆, which is also
the case in discretized SAC algorithm[16].

When we reweigh the probability of actions(at a time) given t, y, π, the value of ∂J
∂t (t, y;π) is fixed, we

have

exp(
1

γ
H(t, y, ·, ∂J

∂y
(t, y;π),

∂2J

∂y2
(t, y;π)))) ∝ exp(

1

γ
q(t, y, v;π))) (108)

Hence, an alternative is to update by

Ent(π′(·|t, y)| exp( 1
γ
q(t, y, v;π))) ≤ Ent(π(·|t, y)| exp( 1

γ
q(t, y, v;π))). (109)

However, we will use H to avoid the additional computational cost induced by ∂J
∂t .

According to our previous parameterization

πθF (vt|Yt) =
1√

(2πhσ2
θ(Yt))

d
exp

(
− 1

2hσ2
θ(Yt)

(vt − µθ(Yt))T (vt − µθ(Yt))
)
. (110)
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We derive the optimality condition as the following

∂

∂θ
Ent(πθF | exp(

1

γ
H)) =

∂

∂θ

∫
A

[log πθF (v|t, y)−
1

γ
H(t, y, v,

∂J

∂y
(t, y;πθF ),

∂2J

∂y2
(t, y;πθF ))]π

θ
F (v|t, y)dv (111)

=

∫
A

[log πθF (v|t, y)−
1

γ
H(t, y, v,

∂J

∂y
(t, y;πθF ),

∂2J

∂y2
(t, y;πθF ))]

∂πθF (v|t, y)
∂θ

dv (112)

+

∫
A

∂

∂θ
(log πθF (v|t, y))πθF (v|t, y)dv (113)

=

∫
A

[log πθF (v|t, y)−
1

γ
H(t, y, v,

∂J

∂y
(t, y;πθF ),

∂2J

∂y2
(t, y;πθF ))]

∂πθF (v|t, y)
∂θ

dv (114)

+

∫
A

∂

∂θ
πθF (v|t, y)dv (115)

=

∫
A

[log πθF (v|t, y)−
1

γ
H(t, y, v,

∂J

∂y
(t, y;πθF ),

∂2J

∂y2
(t, y;πθF ))]

∂πθF (v|t, y)
∂θ

dv (116)

+
∂

∂θ

∫
A

πθF (v|t, y)dv (117)

=

∫
A

[log πθF (v|t, y)−
1

γ
H(t, y, v,

∂J

∂y
(t, y;πθF ),

∂2J

∂y2
(t, y;πθF ))]

∂πθF (v|t, y)
∂θ

dv (118)

=

∫
A

[log πθF (v|t, y)−
1

γ
H(t, y, v,

∂J

∂y
(t, y;πθF ),

∂2J

∂y2
(t, y;πθF ))]

∂

∂θ
(log πθF (v|t, y))πθF (v|t, y)dv.

(119)

We have

log πθF (vt|Yt) = − d

2
log(2πh)− d log σθ(Yt)−

1

2σ2
θ(Yt)

(vt − µθ(Yt))T (vt − µθ(Yt))

=⇒ ∂

∂θ
log πθF (vt|Yt) = − d

σθ(Yt)

∂σθ(Yt)

∂θ
+

(vt − µθ(Yt))T (vt − µθ(Yt))
3σ3

θ(Yt)

∂σθ(Yt)

∂θ
+

1

σ2
θ(Yt)

(vt − µθ(Yt))T
∂µθ(Yt)

∂θ

If an accurate approximation of H(t, y, ·, ∂J∂y (t, y;π),
∂2J
∂y2 (t, y;π)) is available, we can improve current

policy πθF by sample random actions vt from it and take gradient steps, either offline or online

θ ← θ − [log πθF (vt|t, Yt)−
1

γ
H(t, Yt, vt,

∂J

∂y
(t, Yt;π

θ
F ),

∂2J

∂y2
(t, Yt;π

θ
F ))]

∂

∂θ
(log πθF (vt|t, Yt))T (120)

where the explicit formula of ∂
∂θ log π

θ
F (vt|Yt) is given above.

Next, we derive how to get an satisfying approximation of H(t, Yt, vt,
∂J
∂y (t, Yt;π),

∂2J
∂y2 (t, Yt;π)) . Instead

of approximating q from Q by discretization or defining adjoint state , we directly compute Hamiltonian
using the Girsanov reparameterization trick in [10, Appendix C.2, Proposition 4]. We will slightly generalize
the diffusion term of the original proposition in the diffusion term from time-dependent-only to time-space-
denpendent. The idea of proof is roughly the same.

Theorem 4.8. Consider diffusion process

dXs = b(Xs, s)ds+ σ(Xs, s)dWs, X0 = x ∈ Rd (121)

Given reparameterization flow Z : Rd × [0, T ]
C2

→ Rd, satisfying Z(z, 0) = z,∀z ∈ Rd and Z(0, s) = 0,∀s ∈
[0, T ]. Let F : C([0, T ];Rd)→ Rd be a Frechet-differentiable functional, we have

∇xE[F (X)|X0 = x] =E[∇zF (X + Z(z, ·))|z=0 (122)

+ F (X) exp

∫ T

0

(∇zZ(z, s)|z=0∇xb(Xx
s , s)−∇z∂sZ(z, s)|z=0)(σ(X

x
s , s)

−1)T dWt]

(123)

where we use capital X without time subscript and Z(z, ·) to denote one complete trajectory generated by the
corresponding process.
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Remark 4.9. The key idea of Girsanov reparameterization is similar to d
dxf(x)|x=x0

= d
dtf(x0+ t)|t=0, that

is, shift the gradient of x to a new parameter t. Integrating by time, t becomes a family of reparameterization
C2 section Z(z, s), which connects to bundle theory and Lie algebra in differential geometry. We will further
develop this idea in sections later.

Proof. Observe that

∇xE[F (X)|X0 = x] = ∇zE[F (X)|X0 = x+ z]|z=0. (124)

Our next target is to shift the perturbed process Xt to its original position to separate the effect of pertur-
bation, which is exactly the reparameterization component.

Define shifted process

dXx+z
s := b(Xx+z

s , s)ds+ σ(Xx+z
t , t)dWt, X

x+z
0 = x+ z, (125)

and shifted-back process

dX̌x
s := [b(X̌x

s + Z(z, s), s)− ∂sZ(z, s)]ds+ σ(X̌x
s + Z(z, s))dWt, dX̌

x
0 = x (126)

We have

d(X̌x
s + Z(z, s)) = b(X̌x

s + Z(z, s), s)ds+ σ(X̌x
s + Z(z, s), s)dWt, X̌

x
0 + Z(z, 0) = x+ z, (127)

by the uniqueness of the strong solution[29, Theorem 5.2.1], this formula explicitly reparameterizes the
shifted process for any z ∈ Rd. Thus

E[F (X)|X0 = x+ z] =E[F (Xx+z)] (128)

=E[F (X̌x + Z(z, ·))] (129)

=E[F (X + Z(z, ·)) exp(
∫ T

0

σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))dWs

(130)

− 1

2

∫ T

0

|σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))|2ds)]. (131)

Plug it in the representation of the gradient

∇zE[F (X)|X0 = x+ z] = ∇zE[F (X + Z(z, ·)) exp(
∫ T

0

σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))dWs

(132)

− 1

2

∫ T

0

|σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))|2ds)] (133)

We have

∇zE[F (X)|X0 = x+ z] = E[∇zF (X + Z(z, ·)) exp(
∫ T

0

σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))dWs

(134)

− 1

2

∫ T

0

|σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))|2ds) (135)

+ F (X + Z(z, ·)) exp(
∫ T

0

σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))dWs

(136)

− 1

2

∫ T

0

|σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))|2ds) (137)

· (∇z
∫ T

0

σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))dWs (138)

− 1

2
∇z
∫ T

0

|σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))|2ds)] (139)
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Notice

∇z
∫ T

0

|σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))|2ds|z=0 (140)

=

∫ T

0

∇z|σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))|2|z=0ds (141)

=

∫ T

0

2(b(Xx
s + Z(0, s), s)− b(Xx

s , s)− ∂sZ(0, s))T (σ(Xx
s , s)

−1)T∇z(· · · )|z=0ds (142)

=0, (143)

and

∇z
∫ T

0

σ(Xx
s , s)

−1(b(Xx
s + Z(z, s), s)− b(Xx

s , s)− ∂sZ(z, s))dWs (144)

=

∫ T

0

(∇zZ(z, s)|z=0∇xb(Xx
s , s)−∇z∂sZ(z, s)|z=0)(σ(X

x
s , s)

−1)T dWt (145)

Plug them in, we have

∇xE[F (X)|X0 = x] =∇zE[F (X)|X0 = x+ z]|z=0 (146)
=E[∇zF (X + Z(z, ·))|z=0 (147)

+ F (X) exp

∫ T

0

(∇zZ(z, s)|z=0∇xb(Xx
s , s)−∇z∂sZ(z, s)|z=0)(σ(X

x
s , s)

−1)T dWt],

(148)

which completes the proof.

Apply this formula on the ∂J
∂y , we have

J(t, y;πθF ) = EH

[ ∫ T

t

[
1

4β
|vs|2 − γ log π(vs|Ys)

]
ds+ g(YT )

∣∣∣∣Yt = y

]
=⇒∂J

∂y
(t, y;πθF ) =

∂

∂y
Eπθ

F
[EQ[

∫ T

t

[
1

4β
|vs|2 − γ log π(vs|Ys)]ds+ g(YT )

∣∣∣∣Yt = y]]

= Eπθ
F
[∇yEQ[

∫ T

t

[
1

4β
|vs|2 − γ log π(vs|Ys)]ds+ g(YT )

∣∣∣∣Yt = y]].

From reparameterization trick

∇z
∫ T

t

[
1

4β
|µθ(Ys + Z(z, s)) + σθ(Ys + Z(z, s))ξ|2 − γ(−d

2
log(2πh))− d log σθ(Ys + Z(z, s))− 1

2
ξT ξ]ds

(149)

+∇zg(YT + Z(z, T )) (150)

=

∫ T

t

(
1

2β
(µθ(Ys + Z(z, s)) + σθ(Ys + Z(z, s))ξ)T (

∂µθ
∂y

(Ys + Z(z, s))
∂Z

∂z
(z, s) (151)

+ ξ
∂σθ
∂y

(Ys + Z(z, s))
∂Z

∂z
(z, s)) +

dγ

σθ(Ys + Z(z, s))

∂σθ
∂y

(Ys + Z(z, s))
∂Z

∂z
(z, s))ds (152)

+
∂g

∂y
(YT + Z(z, T ))

∂Z

∂z
(z, T ). (153)
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Set z = 0, we have

∇z
∫ T

t

[
1

4β
|µθ(Ys + Z(z, s)) + σθ(Ys + Z(z, s))ξ|2 − γ(−d

2
log(2πh))− d log σθ(Ys + Z(z, s))− 1

2
ξT ξ]ds

(154)

+∇zg(YT + Z(z, T ))

∣∣∣∣
z=0

(155)

=

∫ T

t

(
1

2β
(µθ(Ys) + σθ(Ys)ξ)

T (
∂µθ
∂y

(Ys)
∂Z

∂z
(0, s) (156)

+ ξ
∂σθ
∂y

(Ys)
∂Z

∂z
(0, s)) +

dγ

σθ(Ys)

∂σθ
∂y

(Ys)
∂Z

∂z
(0, s))ds (157)

+
∂g

∂y
(YT )

∂Z

∂z
(0, T ) (158)

=

∫ T

t

(
1

2β
(µθ(Ys) + σθ(Ys)ξ)

T ∂µθ
∂y

(Ys) + ξ
∂σθ
∂y

(Ys) +
dγ

σθ(Ys)

∂σθ
∂y

(Ys))
∂Z

∂z
(0, s)ds (159)

+
∂g

∂y
(YT )

∂Z

∂z
(0, T ) (160)

The second term is easier to compute

(

∫ T

t

(
1

4β
|µθ(Ys) + σθ(Ys)ξ|2 − γ(−

d

2
log(2πh))− d log σθ(Ys)−

1

2
ξT ξ)ds (161)

+ g(YT )) exp

∫ T

0

(
∂Z

∂z
(0, s)(−∇2V (Ys) + 2β(

∂µθ
∂y

(Ys) + ξT
∂σθ
∂y

(Ys)))−
∂2Z

∂z∂s
(0, s))dWt (162)

Combining all of them

∇yEQ[

∫ T

t

[
1

4β
|vs|2 − γ log π(vs|Ys)]ds+ g(YT )

∣∣∣∣Yt = y] (163)

= EQ[

∫ T

t

(
1

2β
(µθ(Ys) + σθ(Ys)ξ)

T ∂µθ
∂y

(Ys) + ξ
∂σθ
∂y

(Ys) +
dγ

σθ(Ys)

∂σθ
∂y

(Ys))
∂Z

∂z
(0, s)ds (164)

+
∂g

∂y
(YT )

∂Z

∂z
(0, T ) + (

∫ T

t

(
1

4β
|µθ(Ys) + σθ(Ys)ξ|2 − γ(−

d

2
log(2πh))− d log σθ(Ys)−

1

2
ξT ξ)ds (165)

+ g(YT )) exp

∫ T

0

(
∂Z

∂z
(0, s)(−∇2V (Ys) + 2β(

∂µθ
∂y

(Ys) + ξT
∂σθ
∂y

(Ys)))−
∂2Z

∂z∂s
(0, s))dWt

∣∣∣∣Yt = y] (166)

Thus

∂J

∂y
(t, y;πθF ) =EH[

∫ T

t

(
1

2β
(µθ(Ys) + σθ(Ys)ξ)

T ∂µθ
∂y

(Ys) + ξ
∂σθ
∂y

(Ys) +
dγ

σθ(Ys)

∂σθ
∂y

(Ys))
∂Z

∂z
(0, s)ds (167)

+
∂g

∂y
(YT )

∂Z

∂z
(0, T ) + (

∫ T

t

(
1

4β
|µθ(Ys) + σθ(Ys)ξ|2 − γ(−

d

2
log(2πh))− d log σθ(Ys)−

1

2
ξT ξ)ds

(168)

+ g(YT )) exp

∫ T

0

(
∂Z

∂z
(0, s)(−∇2V (Ys) + 2β(

∂µθ
∂y

(Ys) + ξT
∂σθ
∂y

(Ys)))−
∂2Z

∂z∂s
(0, s))dWt

∣∣∣∣Yt = y]

(169)

Suppose the reparameterization section Z is already selected. To distinguish the original expression of ∂J
∂y

from its reparameterized form, we denote the latter one LZJ , and parameterize it as LψZJ(this notation is
taken from that of Lie derivative in differential geometry).
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Consider L2 loss

Lψ(t, y, θ) := |LψZJ(t, y, θ)− LZJ(t, y;π)|
2 (170)

≤ EH|LψZJ(t, y, θ)−
∫ T

t

(
1

2β
(µθ(Ys) + σθ(Ys)ξ)

T ∂µθ
∂y

(Ys) + ξ
∂σθ
∂y

(Ys) +
dγ

σθ(Ys)

∂σθ
∂y

(Ys))
∂Z

∂z
(0, s)ds

(171)

+
∂g

∂y
(YT )

∂Z

∂z
(0, T ) + (

∫ T

t

(
1

4β
|µθ(Ys) + σθ(Ys)ξ|2 − γ(−

d

2
log(2πh))− d log σθ(Ys)−

1

2
ξT ξ)ds

(172)

+ g(YT )) exp

∫ T

0

(
∂Z

∂z
(0, s)(−∇2V (Ys) + 2β(

∂µθ
∂y

(Ys) + ξT
∂σθ
∂y

(Ys)))−
∂2Z

∂z∂s
(0, s))dWt|2, (173)

which can be computed by simulation in online setting or by replaying in offline setting. The expectation
EH can be approximated batch-wise, and we will denote the corresponding estimator L̂ψ(t, y, θ).

Remark 4.10. Note that the value function does not depend on any specific v, but on the average behavior
of π along the trajectories sampled.

This gives us the Hamiltonian on approximated LZJ

H(t, y, v, LψZJ(t, y, θ),∇yL
ψ
ZJ(t, y, θ)) =

[
−∇V (y) + 2βv

]
· LψZJ(t, y, θ) + β · ∇yLψZJ(t, y, θ) +

1

4β
|v|2,

(174)

and the optimization step of policy becomes

θ ← θ − [log πθF (vt|t, Yt)−
1

γ
H(t, Yt, vt, L

ψ
ZJ(t, Yt, θ),∇yL

ψ
ZJ(t, Yt, θ))]

∂

∂θ
(log πθF (vt|t, Yt))T (175)

Remark 4.11. The advantage of Girsanov reparameterization is that it does not involve derivatives of the
initial condition, which effectively avoids costly backpropagation along paths when the network is on a large
scale, at the expense of affecting the variance of the result by reparameterization section Z[10, Proposition
2,Theorem 2], a new issue for achieving lower mean square error. We will tackle this problem by injecting
additional physics information via principal bundle theory.

Following the structure of its discretized counterparts in algorithm 1, we derive continuous time Soft
Actor Crictic without any discretization step.

Algorithm 3 Continuous Soft Actor-Critic (Conti-SAC) algorithm for SOC problem

Initialize policy parameters θ, Hamiltonian parameters ψ1, ψ2, empty replay buffer D, tradeoff constant
γ, target parameter ψtarg,1 ← ψ1, ψtarg,2 ← ψ2, smoothing parameter ρ, and selected reparameterization
section Z.
repeat

3: Observe state Yt and select action vt from distribution πθF (·|Yt) throughout 0 ≤ t ≤ T .
Store trajectories (Yt, vt)0≤t≤T in replay buffer D.
if it’s time to update then

6: for each gradient step do
Randomly sample a batch B of trajectories (Yt, vt)0≤t≤T from D.
For tj ∼ Unif [0, T ], 1 ≤ j ≤ |B|, compute the targets for LψZJ

9:

y
tj
L :=

∫ T

tj

(
1

2β
(µθ(Ys) + σθ(Ys)ξ)

T ∂µθ
∂y

(Ys) + ξ
∂σθ
∂y

(Ys) +
dγ

σθ(Ys)

∂σθ
∂y

(Ys))
∂Z

∂z
(0, s)ds

+
∂g

∂y
(YT )

∂Z

∂z
(0, T ) + (

∫ T

tj

(
1

4β
|µθ(Ys) + σθ(Ys)ξ|2 − γ(−

d

2
log(2πh))− d log σθ(Ys)−

1

2
ξT ξ)ds

+ g(YT )) exp

∫ T

0

(
∂Z

∂z
(0, s)(−∇2V (Ys) + 2β(

∂µθ
∂y

(Ys) + ξT
∂σθ
∂y

(Ys)))−
∂2Z

∂z∂s
(0, s))dWt

Update LψZJ by one step of gradient descent
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∇ψiL̂ψi = ∇ψi

1

|B|
∑

1≤j≤|B|

(
Lψi

Z (Yt, vt, θ)− y
tj
L

)2
, for i ∈ {1, 2}.

12: Compute Hamiltonian and update policy by one step of gradient descent

θ ← θ − [log πθF (vt|t, Yt)−
1

γ
H(t, Yt, vt, L

ψ
ZJ(t, Yt, θ),∇yL

ψ
ZJ(t, Yt, θ))]

∂

∂θ
(log πθF (vt|t, Yt))T (176)

where the reparametrization trick is used, that is

vt = µθ(Yt) + σθ(Yt) · ξ, ξ ∼ N (0,
√
hId). (177)

15: Update target network

ψtarg,i ← ρψtarg,i + (1− ρ)ψi for i = 1, 2 (178)

end for
end if

18: until convergence

4.2.2 Continuous Generalization of GFlowNet

We could consider two generalizations to generalize GFlowNet to continuous adaptation: evaluate the differ-
ences in measure along given paths through the Girsanov theorem, a natural extension of trajectory balance
to continuous cases, or directly match the flow via L2 distance through flow matching.

Let use begin with trajectory balance situation. In discrete case, for fixed starting point, the trajectory
balance loss of GFN is given by

LTB =

(
log

χ
∏T−1
t=0 PF (Yt+∆t|Yt; θ)

R(YT )
∏T−1
t̃=0 PB(Yt̃+∆t̃|Yt̃; θ,ϖ)

)2

(179)

where PF and PB are given by the transition probability of the SDE system representing the sampling
strategy, R(YT ) is the reaward, satisfying

R(YT ) =
1

4β

T−1∑
t=0

∆t|vt|2 + g(YT ) (180)

and χ is the normalizing constant of R to be learnt.
Consider

log
χ
∏T−1
t=0 PF (Yt+∆t|Yt; θ)

R(YT )
∏T−1
t̃=0 PB(Yt̃+∆t̃|Yt̃; θ,ϖ)

(181)

= log
χ · exp

∑T−1
t=0 logPF (Yt+∆t|Yt; θ)

R(YT ) · exp
∑T−1
t̃=0 logPB(Yt̃+∆t̃|Yt̃; θ,ϖ)

. (182)

Notice that t̃ = T − t, we have

dYT−t = [−∇V (YT−t) + 2βvT−t − 2βsϖ(vT−t, YT−t, T − t)]d(T − t) +
√
2βdWT−t (183)

=⇒ dYT−t = [∇V (YT−t)− 2βvT−t + 2βsϖ(vT−t, YT−t, T − t)]dt+
√

2βdWT−t (184)

followed by

logχ− logR(YT ) +

T−1∑
t=0

log
PF (Yt+∆t|Yt; θ)

PB(Yt|Yt+∆t; θ,ϖ)
(185)

= logχ− logR(YT )−
T−1∑
t=0

log
PB(Yt|Yt+∆t; θ,ϖ)

PF (Yt+∆t|Yt; θ)
(186)
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Notice, when we perform gradient descent, the Yt(ω) here are specified trajectory in the replay buffer.
Taking limit, the equation above correspond to

LTB :=EH(logχ− log
dM
dQ

(Y (ω))− logR(YT ))
2 (187)

where: dYt = [−∇V (Yt) + 2βvt]dt+
√

2βdWt ∼ Q, (188)

dYT−t = [∇V (YT−t)− 2βvT−t + 2βs(1)ϖ (vT−t, YT−t, T − t)]dt+
√

2βdWT−t ∼M. (189)

Suppose a trajectory (Yt, vt), 0 ≤ t ≤ T is taken from the replay buffer, we have

dM
dQ

= exp(−
∫ T

0

2∇V (Yt)− 4βvt + 2βs
(1)
ϖ (vt, Yt, T − t)√

2β
dWs (190)

− 1

2

∫ T

0

(2∇V (Yt)− 4βvt + 2βs
(1)
ϖ (vt, Yt, T − t))2

2β
ds), (191)

from Girsanov’s theorem.
Finally, we have

LTB = EH(logχ+

∫ T

0

2∇V (Yt)− 4βvt + 2βs
(1)
ϖ (vt, Yt, T − t)√

2β
dWs (192)

+
1

2

∫ T

0

(2∇V (Yt)− 4βvt + 2βs
(1)
ϖ (vt, Yt, T − t))2

2β
ds− logR(YT ))

2. (193)

Remark 4.12. Although we use experience replay in offline training, we do not detach vθF from that
graph,that is, θ,ϖ, χ are updated simultaneously.

The flow matching loss is easier to compute, but requires additional backward trajectory samples.

LFM = Et∼[0,T ]EH|Y forwardt − Y backwardt |2. (194)

We present the pseudocode for continuous GFN under the flow matching case.

Algorithm 4 Continuous Generative Flow Network (Conti-GFN) algorithm for SOC problem(flow
matching version)

Initialize GFlowNet θ,ϖ , partition function χ and empty replay buffer D.
repeat

Collect a set of paths (Y forwardt )0≤t≤T by interaction with forward policy vθF .
4: Collect a set of paths (Y backwardt )0≤t≤T by interaction with backward policy vθF , sϖ.

if it’s time to update then
Get mini-batch B sampled from D
Sample a batch of update time t ∼ [0, T ]

8: Update GFlowNet

L̂FM =
1

|B|

|B|∑
k=1

|Y forward,kt − Y backward,kt |2. (195)

end if
until convergence

5 Variance Reduction via Principal Bundle Theory
In this section, our main focus lies on how to select a reparameterization flow Z(z, t) that fully leverages
physics information available by principal bundle theory. We present our "physics-informed reparameteri-
zation" beginning with an overview of equivariant flow in section 5.1, then we delve into the relationship
between reparameterization and variance in section 5.2, and ultimately, we outline our innovative reparam-
eterization method grounded in principal bundle theory in 5.3.
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5.1 Equivariant Flow
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